These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Coevolution between bacterial CRISPR-Cas systems and their bacteriophages. Watson BNJ; Steens JA; Staals RHJ; Westra ER; van Houte S Cell Host Microbe; 2021 May; 29(5):715-725. PubMed ID: 33984274 [TBL] [Abstract][Full Text] [Related]
6. Antibiotics that affect translation can antagonize phage infectivity by interfering with the deployment of counter-defenses. Pons BJ; Dimitriu T; Westra ER; van Houte S Proc Natl Acad Sci U S A; 2023 Jan; 120(4):e2216084120. PubMed ID: 36669116 [TBL] [Abstract][Full Text] [Related]
7. Ecology and evolution of phages encoding anti-CRISPR proteins. Pons BJ; van Houte S; Westra ER; Chevallereau A J Mol Biol; 2023 Apr; 435(7):167974. PubMed ID: 36690071 [TBL] [Abstract][Full Text] [Related]
8. Covalent Modifications of the Bacteriophage Genome Confer a Degree of Resistance to Bacterial CRISPR Systems. Liu Y; Dai L; Dong J; Chen C; Zhu J; Rao VB; Tao P J Virol; 2020 Nov; 94(23):. PubMed ID: 32938767 [TBL] [Abstract][Full Text] [Related]
9. Anti-CRISPRs go viral: The infection biology of CRISPR-Cas inhibitors. Li Y; Bondy-Denomy J Cell Host Microbe; 2021 May; 29(5):704-714. PubMed ID: 33444542 [TBL] [Abstract][Full Text] [Related]
10. Bacteriophages and phage-delivered CRISPR-Cas system as antibacterial therapy. Yeh TK; Jean SS; Lee YL; Lu MC; Ko WC; Lin HJ; Liu PY; Hsueh PR Int J Antimicrob Agents; 2022 Jan; 59(1):106475. PubMed ID: 34767917 [TBL] [Abstract][Full Text] [Related]
11. Potent Cas9 Inhibition in Bacterial and Human Cells by AcrIIC4 and AcrIIC5 Anti-CRISPR Proteins. Lee J; Mir A; Edraki A; Garcia B; Amrani N; Lou HE; Gainetdinov I; Pawluk A; Ibraheim R; Gao XD; Liu P; Davidson AR; Maxwell KL; Sontheimer EJ mBio; 2018 Dec; 9(6):. PubMed ID: 30514786 [TBL] [Abstract][Full Text] [Related]
12. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Pawluk A; Staals RH; Taylor C; Watson BN; Saha S; Fineran PC; Maxwell KL; Davidson AR Nat Microbiol; 2016 Jun; 1(8):16085. PubMed ID: 27573108 [TBL] [Abstract][Full Text] [Related]
16. Phage Against the Machine: Discovery and Mechanism of Type V Anti-CRISPRs. Marino ND J Mol Biol; 2023 Apr; 435(7):168054. PubMed ID: 36934807 [TBL] [Abstract][Full Text] [Related]
17. Meet the Anti-CRISPRs: Widespread Protein Inhibitors of CRISPR-Cas Systems. Hwang S; Maxwell KL CRISPR J; 2019 Feb; 2(1):23-30. PubMed ID: 31021234 [TBL] [Abstract][Full Text] [Related]
18. Anti-CRISPR proteins trigger a burst of CRISPR-Cas9 expression that enhances phage defense. Workman RE; Stoltzfus MJ; Keith NC; Euler CW; Bondy-Denomy J; Modell JW Cell Rep; 2024 Mar; 43(3):113849. PubMed ID: 38427560 [TBL] [Abstract][Full Text] [Related]
19. Anti-CRISPR prediction using deep learning reveals an inhibitor of Cas13b nucleases. Wandera KG; Alkhnbashi OS; Bassett HVI; Mitrofanov A; Hauns S; Migur A; Backofen R; Beisel CL Mol Cell; 2022 Jul; 82(14):2714-2726.e4. PubMed ID: 35649413 [TBL] [Abstract][Full Text] [Related]
20. Role of CRISPR-Cas systems and anti-CRISPR proteins in bacterial antibiotic resistance. Kadkhoda H; Gholizadeh P; Samadi Kafil H; Ghotaslou R; Pirzadeh T; Ahangarzadeh Rezaee M; Nabizadeh E; Feizi H; Aghazadeh M Heliyon; 2024 Jul; 10(14):e34692. PubMed ID: 39149034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]