BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35033872)

  • 21. Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) Are Necessary for Light Entrainment of Peripheral Clocks.
    Kofuji P; Mure LS; Massman LJ; Purrier N; Panda S; Engeland WC
    PLoS One; 2016; 11(12):e0168651. PubMed ID: 27992553
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arvicanthis ansorgei, a Novel Model for the Study of Sleep and Waking in Diurnal Rodents.
    Hubbard J; Ruppert E; Calvel L; Robin-Choteau L; Gropp CM; Allemann C; Reibel S; Sage-Ciocca D; Bourgin P
    Sleep; 2015 Jun; 38(6):979-88. PubMed ID: 25409107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissecting and modeling photic and melanopsin effects to predict sleep disturbances induced by irregular light exposure in mice.
    Hubbard J; Kobayashi Frisk M; Ruppert E; Tsai JW; Fuchs F; Robin-Choteau L; Husse J; Calvel L; Eichele G; Franken P; Bourgin P
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34155139
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Loss of gq/11 genes does not abolish melanopsin phototransduction.
    Chew KS; Schmidt TM; Rupp AC; Kofuji P; Trimarchi JM
    PLoS One; 2014; 9(5):e98356. PubMed ID: 24870805
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mice deficient of glutamatergic signaling from intrinsically photosensitive retinal ganglion cells exhibit abnormal circadian photoentrainment.
    Purrier N; Engeland WC; Kofuji P
    PLoS One; 2014; 9(10):e111449. PubMed ID: 25357191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs.
    Chen SK; Badea TC; Hattar S
    Nature; 2011 Jul; 476(7358):92-5. PubMed ID: 21765429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Degeneration of ipRGCs in Mouse Models of Huntington's Disease Disrupts Non-Image-Forming Behaviors Before Motor Impairment.
    Lin MS; Liao PY; Chen HM; Chang CP; Chen SK; Chern Y
    J Neurosci; 2019 Feb; 39(8):1505-1524. PubMed ID: 30587542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Melanopsin Cell Dysfunction is Involved in Sleep Disruption in Parkinson's Disease.
    Feigl B; Dumpala S; Kerr GK; Zele AJ
    J Parkinsons Dis; 2020; 10(4):1467-1476. PubMed ID: 32986681
    [TBL] [Abstract][Full Text] [Related]  

  • 29. M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina.
    Prigge CL; Yeh PT; Liou NF; Lee CC; You SF; Liu LL; McNeill DS; Chew KS; Hattar S; Chen SK; Zhang DQ
    J Neurosci; 2016 Jul; 36(27):7184-97. PubMed ID: 27383593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus.
    Baver SB; Pickard GE; Sollars PJ; Pickard GE
    Eur J Neurosci; 2008 Apr; 27(7):1763-70. PubMed ID: 18371076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The injury resistant ability of melanopsin-expressing intrinsically photosensitive retinal ganglion cells.
    Cui Q; Ren C; Sollars PJ; Pickard GE; So KF
    Neuroscience; 2015 Jan; 284():845-853. PubMed ID: 25446359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The retinal ipRGC-preoptic circuit mediates the acute effect of light on sleep.
    Zhang Z; Beier C; Weil T; Hattar S
    Nat Commun; 2021 Aug; 12(1):5115. PubMed ID: 34433830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Melanopsin retinal ganglion cells and the maintenance of circadian and pupillary responses to light in aged rodless/coneless (rd/rd cl) mice.
    Semo M; Peirson S; Lupi D; Lucas RJ; Jeffery G; Foster RG
    Eur J Neurosci; 2003 May; 17(9):1793-801. PubMed ID: 12752778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Melanopsin Regulates Both Sleep-Promoting and Arousal-Promoting Responses to Light.
    Pilorz V; Tam SK; Hughes S; Pothecary CA; Jagannath A; Hankins MW; Bannerman DM; Lightman SL; Vyazovskiy VV; Nolan PM; Foster RG; Peirson SN
    PLoS Biol; 2016 Jun; 14(6):e1002482. PubMed ID: 27276063
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting.
    Panda S; Sato TK; Castrucci AM; Rollag MD; DeGrip WJ; Hogenesch JB; Provencio I; Kay SA
    Science; 2002 Dec; 298(5601):2213-6. PubMed ID: 12481141
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic advances in ophthalmology: the role of melanopsin-expressing, intrinsically photosensitive retinal ganglion cells in the circadian organization of the visual system.
    Ramsey DJ; Ramsey KM; Vavvas DG
    Semin Ophthalmol; 2013; 28(5-6):406-21. PubMed ID: 24010846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemogenetic Activation of Melanopsin Retinal Ganglion Cells Induces Signatures of Arousal and/or Anxiety in Mice.
    Milosavljevic N; Cehajic-Kapetanovic J; Procyk CA; Lucas RJ
    Curr Biol; 2016 Sep; 26(17):2358-63. PubMed ID: 27426512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlling the number of melanopsin-containing retinal ganglion cells by early light exposure.
    Hong J; Zeng Q; Wang H; Kuo DS; Baldridge WH; Wang N
    Exp Eye Res; 2013 Jun; 111():17-26. PubMed ID: 23541830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Melanopsin and inner retinal photoreception.
    Bailes HJ; Lucas RJ
    Cell Mol Life Sci; 2010 Jan; 67(1):99-111. PubMed ID: 19865798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions.
    Aranda ML; Schmidt TM
    Cell Mol Life Sci; 2021 Feb; 78(3):889-907. PubMed ID: 32965515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.