These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 35034281)
1. Spreading-dependent or independent Sir2-mediated gene silencing in budding yeast. Yeom S; Oh J; Lee JS Genes Genomics; 2022 Mar; 44(3):359-367. PubMed ID: 35034281 [TBL] [Abstract][Full Text] [Related]
2. The Chromatin and Transcriptional Landscape of Native Saccharomyces cerevisiae Telomeres and Subtelomeric Domains. Ellahi A; Thurtle DM; Rine J Genetics; 2015 Jun; 200(2):505-21. PubMed ID: 25823445 [TBL] [Abstract][Full Text] [Related]
3. Enforcement of a lifespan-sustaining distribution of Sir2 between telomeres, mating-type loci, and rDNA repeats by Rif1. Salvi JS; Chan JN; Pettigrew C; Liu TT; Wu JD; Mekhail K Aging Cell; 2013 Feb; 12(1):67-75. PubMed ID: 23082874 [TBL] [Abstract][Full Text] [Related]
4. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Hoppe GJ; Tanny JC; Rudner AD; Gerber SA; Danaie S; Gygi SP; Moazed D Mol Cell Biol; 2002 Jun; 22(12):4167-80. PubMed ID: 12024030 [TBL] [Abstract][Full Text] [Related]
5. A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin-modulating factors. Smith JS; Caputo E; Boeke JD Mol Cell Biol; 1999 Apr; 19(4):3184-97. PubMed ID: 10082585 [TBL] [Abstract][Full Text] [Related]
6. Yeast Tdh3 (glyceraldehyde 3-phosphate dehydrogenase) is a Sir2-interacting factor that regulates transcriptional silencing and rDNA recombination. Ringel AE; Ryznar R; Picariello H; Huang KL; Lazarus AG; Holmes SG PLoS Genet; 2013; 9(10):e1003871. PubMed ID: 24146631 [TBL] [Abstract][Full Text] [Related]
7. Yin and Yang of histone H2B roles in silencing and longevity: a tale of two arginines. Dai J; Hyland EM; Norris A; Boeke JD Genetics; 2010 Nov; 186(3):813-28. PubMed ID: 20713692 [TBL] [Abstract][Full Text] [Related]
8. A unique class of conditional sir2 mutants displays distinct silencing defects in Saccharomyces cerevisiae. Garcia SN; Pillus L Genetics; 2002 Oct; 162(2):721-36. PubMed ID: 12399383 [TBL] [Abstract][Full Text] [Related]
9. The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae. Gartenberg MR; Smith JS Genetics; 2016 Aug; 203(4):1563-99. PubMed ID: 27516616 [TBL] [Abstract][Full Text] [Related]
10. Sumoylation of Sir2 differentially regulates transcriptional silencing in yeast. Hannan A; Abraham NM; Goyal S; Jamir I; Priyakumar UD; Mishra K Nucleic Acids Res; 2015 Dec; 43(21):10213-26. PubMed ID: 26319015 [TBL] [Abstract][Full Text] [Related]
11. The SUMO E3 ligase Siz2 exerts a locus-dependent effect on gene silencing in Saccharomyces cerevisiae. Pasupala N; Easwaran S; Hannan A; Shore D; Mishra K Eukaryot Cell; 2012 Apr; 11(4):452-62. PubMed ID: 22345352 [TBL] [Abstract][Full Text] [Related]
12. Calorie restriction effects on silencing and recombination at the yeast rDNA. Smith DL; Li C; Matecic M; Maqani N; Bryk M; Smith JS Aging Cell; 2009 Dec; 8(6):633-42. PubMed ID: 19732044 [TBL] [Abstract][Full Text] [Related]
13. Epistatic interaction between the K-homology domain protein HEK2 and SIR1 at HMR and telomeres in yeast. Denisenko O; Bomsztyk K J Mol Biol; 2008 Jan; 375(4):1178-87. PubMed ID: 18067921 [TBL] [Abstract][Full Text] [Related]
14. Limiting the extent of the RDN1 heterochromatin domain by a silencing barrier and Sir2 protein levels in Saccharomyces cerevisiae. Biswas M; Maqani N; Rai R; Kumaran SP; Iyer KR; Sendinc E; Smith JS; Laloraya S Mol Cell Biol; 2009 May; 29(10):2889-98. PubMed ID: 19289503 [TBL] [Abstract][Full Text] [Related]
15. Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA. Fritze CE; Verschueren K; Strich R; Easton Esposito R EMBO J; 1997 Nov; 16(21):6495-509. PubMed ID: 9351831 [TBL] [Abstract][Full Text] [Related]
16. A model for step-wise assembly of heterochromatin in yeast. Moazed D; Rudner AD; Huang J; Hoppe GJ; Tanny JC Novartis Found Symp; 2004; 259():48-56; discussion 56-62, 163-9. PubMed ID: 15171246 [TBL] [Abstract][Full Text] [Related]
17. Evolution and Functional Trajectory of Sir1 in Gene Silencing. Ellahi A; Rine J Mol Cell Biol; 2016 Jan; 36(7):1164-79. PubMed ID: 26811328 [TBL] [Abstract][Full Text] [Related]
18. Distribution of a limited Sir2 protein pool regulates the strength of yeast rDNA silencing and is modulated by Sir4p. Smith JS; Brachmann CB; Pillus L; Boeke JD Genetics; 1998 Jul; 149(3):1205-19. PubMed ID: 9649515 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide analysis of functional sirtuin chromatin targets in yeast. Li M; Valsakumar V; Poorey K; Bekiranov S; Smith JS Genome Biol; 2013 May; 14(5):R48. PubMed ID: 23710766 [TBL] [Abstract][Full Text] [Related]
20. Saccharomyces cerevisiae Esc2p interacts with Sir2p through a small ubiquitin-like modifier (SUMO)-binding motif and regulates transcriptionally silent chromatin in a locus-dependent manner. Yu Q; Kuzmiak H; Olsen L; Kulkarni A; Fink E; Zou Y; Bi X J Biol Chem; 2010 Mar; 285(10):7525-36. PubMed ID: 20048165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]