These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 35034817)
1. The contribution of pore size and porosity of 3D printed porous titanium scaffolds to osteogenesis. Zhang Y; Sun N; Zhu M; Qiu Q; Zhao P; Zheng C; Bai Q; Zeng Q; Lu T Biomater Adv; 2022 Feb; 133():112651. PubMed ID: 35034817 [TBL] [Abstract][Full Text] [Related]
2. Influence of porous tantalum scaffold pore size on osteogenesis and osteointegration: A comprehensive study based on 3D-printing technology. Luo C; Wang C; Wu X; Xie X; Wang C; Zhao C; Zou C; Lv F; Huang W; Liao J Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112382. PubMed ID: 34579901 [TBL] [Abstract][Full Text] [Related]
3. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. Ran Q; Yang W; Hu Y; Shen X; Yu Y; Xiang Y; Cai K J Mech Behav Biomed Mater; 2018 Aug; 84():1-11. PubMed ID: 29709846 [TBL] [Abstract][Full Text] [Related]
4. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Wang H; Su K; Su L; Liang P; Ji P; Wang C Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109908. PubMed ID: 31499974 [TBL] [Abstract][Full Text] [Related]
5. The effect of 3D-printed Ti Wang H; Su K; Su L; Liang P; Ji P; Wang C J Mech Behav Biomed Mater; 2018 Dec; 88():488-496. PubMed ID: 30223212 [TBL] [Abstract][Full Text] [Related]
6. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications. Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962 [TBL] [Abstract][Full Text] [Related]
7. Promotion of Osseointegration between Implant and Bone Interface by Titanium Alloy Porous Scaffolds Prepared by 3D Printing. Zheng Y; Han Q; Wang J; Li D; Song Z; Yu J ACS Biomater Sci Eng; 2020 Sep; 6(9):5181-5190. PubMed ID: 33455268 [TBL] [Abstract][Full Text] [Related]
8. Osteogenesis of 3D printed macro-pore size biphasic calcium phosphate scaffold in rabbit calvaria. Liu F; Liu Y; Li X; Wang X; Li D; Chung S; Chen C; Lee IS J Biomater Appl; 2019 Apr; 33(9):1168-1177. PubMed ID: 30665312 [TBL] [Abstract][Full Text] [Related]
9. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Taniguchi N; Fujibayashi S; Takemoto M; Sasaki K; Otsuki B; Nakamura T; Matsushita T; Kokubo T; Matsuda S Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():690-701. PubMed ID: 26652423 [TBL] [Abstract][Full Text] [Related]
10. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Chen Z; Yan X; Yin S; Liu L; Liu X; Zhao G; Ma W; Qi W; Ren Z; Liao H; Liu M; Cai D; Fang H Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110289. PubMed ID: 31753386 [TBL] [Abstract][Full Text] [Related]
11. Optimize the pore size-pore distribution-pore geometry-porosity of 3D-printed porous tantalum to obtain optimal critical bone defect repair capability. Wang X; Zhang D; Peng H; Yang J; Li Y; Xu J Biomater Adv; 2023 Nov; 154():213638. PubMed ID: 37812984 [TBL] [Abstract][Full Text] [Related]
12. Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth. Chang B; Song W; Han T; Yan J; Li F; Zhao L; Kou H; Zhang Y Acta Biomater; 2016 Mar; 33():311-21. PubMed ID: 26802441 [TBL] [Abstract][Full Text] [Related]
13. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure. Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970 [TBL] [Abstract][Full Text] [Related]
14. Porosity of 3D biomaterial scaffolds and osteogenesis. Karageorgiou V; Kaplan D Biomaterials; 2005 Sep; 26(27):5474-91. PubMed ID: 15860204 [TBL] [Abstract][Full Text] [Related]
15. 3D printed bioceramic scaffolds: Adjusting pore dimension is beneficial for mandibular bone defects repair. Qin H; Wei Y; Han J; Jiang X; Yang X; Wu Y; Gou Z; Chen L J Tissue Eng Regen Med; 2022 Apr; 16(4):409-421. PubMed ID: 35156316 [TBL] [Abstract][Full Text] [Related]
16. 3D printed titanium scaffolds with homogeneous diamond-like structures mimicking that of the osteocyte microenvironment and its bone regeneration study. Pei X; Wu L; Zhou C; Fan H; Gou M; Li Z; Zhang B; Lei H; Sun H; Liang J; Jiang Q; Fan Y; Zhang X Biofabrication; 2020 Oct; 13(1):. PubMed ID: 33045688 [TBL] [Abstract][Full Text] [Related]
17. Highly Porous 3D Printed Tantalum Scaffolds Have Better Biomechanical and Microstructural Properties than Titanium Scaffolds. Fan H; Deng S; Tang W; Muheremu A; Wu X; He P; Tan C; Wang G; Tang J; Guo K; Yang L; Wang F Biomed Res Int; 2021; 2021():2899043. PubMed ID: 34621893 [TBL] [Abstract][Full Text] [Related]
18. In Vitro and In Vivo Analysis of the Effects of 3D-Printed Porous Titanium Alloy Scaffold Structure on Osteogenic Activity. Xu Z; Zhang Y; Wu Y; Zhang Z; Jiang D; Jia R; Wang X; Liu Z Biomed Res Int; 2022; 2022():8494431. PubMed ID: 35996542 [TBL] [Abstract][Full Text] [Related]
19. Early osteointegration evaluation of porous Ti6Al4V scaffolds designed based on triply periodic minimal surface models. Li L; Shi J; Zhang K; Yang L; Yu F; Zhu L; Liang H; Wang X; Jiang Q J Orthop Translat; 2019 Oct; 19():94-105. PubMed ID: 31844617 [TBL] [Abstract][Full Text] [Related]
20. 3D printing of dual-cell delivery titanium alloy scaffolds for improving osseointegration through enhancing angiogenesis and osteogenesis. Zhao H; Shen S; Zhao L; Xu Y; Li Y; Zhuo N BMC Musculoskelet Disord; 2021 Aug; 22(1):734. PubMed ID: 34452607 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]