BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 35034941)

  • 41. Antioxidant compounds extracted from Diaporthe schini using supercritical CO
    da Rosa BV; Kuhn KR; Ugalde GA; Zabot GL; Kuhn RC
    Bioprocess Biosyst Eng; 2020 Jan; 43(1):133-141. PubMed ID: 31542822
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Supercritical CO2 extraction of essential oils from Chamaecyparis obtusa.
    Jin Y; Han D; Tian M; Row KH
    Nat Prod Commun; 2010 Mar; 5(3):461-4. PubMed ID: 20420328
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Extraction and separation of volatile and fixed oils from seeds of Myristica fragrans by supercritical CO₂: chemical composition and cytotoxic activity on Caco-2 cancer cells.
    Piras A; Rosa A; Marongiu B; Atzeri A; Dessì MA; Falconieri D; Porcedda S
    J Food Sci; 2012 Apr; 77(4):C448-53. PubMed ID: 22429024
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chemical composition and prebiotic activity of baru (Dipteryx alata Vog.) pulp on probiotic strains and human colonic microbiota.
    Alves-Santos AM; Sampaio KB; Lima MDS; Coelho ASG; Souza EL; Naves MMV
    Food Res Int; 2023 Feb; 164():112366. PubMed ID: 36737953
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Baru oil (Dipteryx alata vog.) applied in the formation of O/W nanoemulsions: A study of physical-chemical, rheological and interfacial properties.
    Paulo LAO; Fernandes RN; Simiqueli AA; Rocha F; Dias MMDS; Minim VPR; Minim LA; Vidigal MCTR
    Food Res Int; 2023 Aug; 170():112961. PubMed ID: 37316008
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Supercritical carbon dioxide extraction of oil and squalene from amaranthus grain.
    He HP; Corke H; Cai JG
    J Agric Food Chem; 2003 Dec; 51(27):7921-5. PubMed ID: 14690374
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chemical and Fatty Acid Compositions of Crude and Purified Extracts Obtained from Datura innoxia Seeds Extracted with Different Solvents.
    Mokbli S; Sbihi HM; Nehdi IA; Azam M; Fadhila A; Romdhani-Younes M; Al-Resayes SI
    J Oleo Sci; 2021; 70(3):321-332. PubMed ID: 33658465
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Extraction of edible oils and amino acids from eel by-products using clean compressed solvents: An approach of complete valorization.
    Park JS; Roy VC; Kim SY; Lee SC; Chun BS
    Food Chem; 2022 Sep; 388():132949. PubMed ID: 35436637
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mathematical modelling for extraction of oil from Dracocephalum kotschyi seeds in supercritical carbon dioxide.
    Sodeifian G; Sajadian SA; Honarvar B
    Nat Prod Res; 2018 Apr; 32(7):795-803. PubMed ID: 28783956
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of Extraction Methods on Phytochemicals of Rice Bran Oils Produced from Colored Rice.
    Mingyai S; Srikaeo K; Kettawan A; Singanusong R; Nakagawa K; Kimura F; Ito J
    J Oleo Sci; 2018 Feb; 67(2):135-142. PubMed ID: 29367480
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of response surface methodology to optimise supercritical carbon dioxide extraction of volatile compounds from Crocus sativus.
    Shao Q; Huang Y; Zhou A; Guo H; Zhang A; Wang Y
    J Sci Food Agric; 2014 May; 94(7):1430-6. PubMed ID: 24834501
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Extraction of phytosterols and tocopherols from rapeseed oil waste by supercritical CO
    Jafarian Asl P; Niazmand R; Yahyavi F
    Heliyon; 2020 Mar; 6(3):e03592. PubMed ID: 32258458
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Supercritical extraction of volatile and fixed oils from
    Piras A; Porcedda S; Falconieri D; Fais A; Era B; Carta G; Rosa A
    Nat Prod Res; 2022 Apr; 36(7):1883-1888. PubMed ID: 32820642
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fatty acid composition and antioxidant activity of tea (Camellia sinensis L.) seed oil extracted by optimized supercritical carbon dioxide.
    Wang Y; Sun D; Chen H; Qian L; Xu P
    Int J Mol Sci; 2011; 12(11):7708-19. PubMed ID: 22174626
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chemical Composition and Antioxidant Capacity of Brazilian Passiflora Seed Oils.
    de Santana FC; Shinagawa FB; Araujo Eda S; Costa AM; Mancini-Filho J
    J Food Sci; 2015 Dec; 80(12):C2647-54. PubMed ID: 26512548
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of ultra-high-pressure homogenization treatment on the phytosterols, tocopherols, and polyamines of almond beverage.
    Toro-Funes N; Bosch-Fusté J; Veciana-Nogués MT; Vidal-Carou MC
    J Agric Food Chem; 2014 Oct; 62(39):9539-43. PubMed ID: 25188722
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Supercritical CO
    Baranauskienė R; Venskutonis PR
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056665
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Supercritical carbon dioxide extraction of seed oil from winter melon (Benincasa hispida) and its antioxidant activity and fatty acid composition.
    Bimakr M; Rahman RA; Taip FS; Adzahan NM; Sarker MZ; Ganjloo A
    Molecules; 2013 Jan; 18(1):997-1014. PubMed ID: 23322066
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative analysis of the oil and supercritical CO2 extract of Elettaria cardamomum (L.) Maton.
    Marongiu B; Piras A; Porcedda S
    J Agric Food Chem; 2004 Oct; 52(20):6278-82. PubMed ID: 15453700
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new methodology capable of characterizing most volatile and less volatile minor edible oils components in a single chromatographic run without solvents or reagents. Detection of new components.
    Alberdi-Cedeño J; Ibargoitia ML; Cristillo G; Sopelana P; Guillén MD
    Food Chem; 2017 Apr; 221():1135-1144. PubMed ID: 27979070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.