BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35034954)

  • 1. CRISPR screening in human hematopoietic stem and progenitor cells reveals an enrichment for tumor suppressor genes within chromosome 7 commonly deleted regions.
    Baeten JT; Liu W; Preddy IC; Zhou N; McNerney ME
    Leukemia; 2022 May; 36(5):1421-1425. PubMed ID: 35034954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo Engineering of Chromosome 19 q-arm by Employing the CRISPR/AsCpf1 and ddAsCpf1 Systems in Human Malignant Gliomas (Hypothesis).
    Abak A; Shoorei H; Taheri M; Ghafouri-Fard S
    J Mol Neurosci; 2021 Aug; 71(8):1648-1663. PubMed ID: 33990905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Application of clustered regularly interspaced short palindromic repeats- associated protein 9 gene editing technology for treatment of HBV infection].
    Wang YD; Liang QF; Li ZY; Zhao CY
    Zhonghua Gan Zang Bing Za Zhi; 2018 Nov; 26(11):860-864. PubMed ID: 30616324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR genome editing in stem cells turns to gold.
    Asokan A
    Nat Mater; 2019 Oct; 18(10):1038-1039. PubMed ID: 31537943
    [No Abstract]   [Full Text] [Related]  

  • 6. A Versatile Tool for the Quantification of CRISPR/Cas9-Induced Genome Editing Events in Human Hematopoietic Cell Lines and Hematopoietic Stem/Progenitor Cells.
    Jayavaradhan R; Pillis DM; Malik P
    J Mol Biol; 2019 Jan; 431(1):102-110. PubMed ID: 29751014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. E Pluribus Unum ("Out of Many, One"): CRISPR Modeling of Myeloid Expansion.
    Shin J; Corn JE
    Cell Stem Cell; 2017 Oct; 21(4):415-416. PubMed ID: 28985519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies for Optimization of the Clustered Regularly Interspaced Short Palindromic Repeat-Based Genome Editing System for Enhanced Editing Specificity.
    Wang YM; Wang HZ; Jian YZ; Luo ZT; Shao HW; Zhang WF
    Hum Gene Ther; 2022 Apr; 33(7-8):358-370. PubMed ID: 34963339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high efficiency precision genome editing method with CRISPR in iPSCs.
    Singh A; Smedley GD; Rose JG; Fredriksen K; Zhang Y; Li L; Yuan SH
    Sci Rep; 2024 Apr; 14(1):9933. PubMed ID: 38688988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustered Regularly Interspaced Short Palindromic Repeats System of Genome Engineering in Embryos to Repair Genes.
    Niazvand F; Fathinezhad Z; Alfuraiji N; Etajuri EA; Amini-Chermahini F; Chehelgerdi M; Ranjbar R
    J Biomed Nanotechnol; 2021 Mar; 17(3):331-356. PubMed ID: 33875070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-Wide Analysis of Off-Target CRISPR/Cas9 Activity in Single-Cell-Derived Human Hematopoietic Stem and Progenitor Cell Clones.
    Smith RH; Chen YC; Seifuddin F; Hupalo D; Alba C; Reger R; Tian X; Araki D; Dalgard CL; Childs RW; Pirooznia M; Larochelle A
    Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33322084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research advances on the development and application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein system].
    Tan JJ; Peng YZ; Huang GT
    Zhonghua Shao Shang Za Zhi; 2021 Jul; 37(7):681-687. PubMed ID: 34304411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.
    Doetschman T; Georgieva T
    Circ Res; 2017 Mar; 120(5):876-894. PubMed ID: 28254804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-efficiency CRISPR induction of t(9;11) chromosomal translocations and acute leukemias in human blood stem cells.
    Jeong J; Jager A; Domizi P; Pavel-Dinu M; Gojenola L; Iwasaki M; Wei MC; Pan F; Zehnder JL; Porteus MH; Davis KL; Cleary ML
    Blood Adv; 2019 Oct; 3(19):2825-2835. PubMed ID: 31582391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Considerations for Cardiac CRISPR.
    Carroll KJ; Olson EN
    Circ Res; 2017 Oct; 121(10):1111-1112. PubMed ID: 29074525
    [No Abstract]   [Full Text] [Related]  

  • 16. Gene Editing of Human Hematopoietic Stem and Progenitor Cells: Promise and Potential Hurdles.
    Yu KR; Natanson H; Dunbar CE
    Hum Gene Ther; 2016 Oct; 27(10):729-740. PubMed ID: 27483988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of the CRISPR-Cpf1 system with ribozyme-processed crRNA.
    Gao Z; Herrera-Carrillo E; Berkhout B
    RNA Biol; 2018; 15(12):1458-1467. PubMed ID: 30470168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The escape of CRISPR-mediated gene editing in Zymomonas mobilis.
    Chen M; Huang Y; Zheng Y; Wu B; He M
    FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 36690344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene knockout in highly purified mouse hematopoietic stem cells by CRISPR/Cas9 technology.
    Dong Y; Bai H; Dong F; Zhang XB; Ema H
    J Immunol Methods; 2021 Aug; 495():113070. PubMed ID: 33957108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. To CRISPR and beyond: the evolution of genome editing in stem cells.
    Chen KY; Knoepfler PS
    Regen Med; 2016 Dec; 11(8):801-816. PubMed ID: 27905217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.