These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 35034981)
1. Microbial processes during deposition and diagenesis of Banded Iron Formations. Dreher CL; Schad M; Robbins LJ; Konhauser KO; Kappler A; Joshi P Palaontol Z; 2021; 95(4):593-610. PubMed ID: 35034981 [TBL] [Abstract][Full Text] [Related]
2. Dissolved silica affects the bulk iron redox state and recrystallization of minerals generated by photoferrotrophy in a simulated Archean ocean. Zhou A; Templeton AS; Johnson JE Geobiology; 2024; 22(1):e12587. PubMed ID: 38385601 [TBL] [Abstract][Full Text] [Related]
3. Laboratory Simulation of an Iron(II)-rich Precambrian Marine Upwelling System to Explore the Growth of Photosynthetic Bacteria. Maisch M; Wu W; Kappler A; Swanner ED J Vis Exp; 2016 Jul; (113):. PubMed ID: 27500924 [TBL] [Abstract][Full Text] [Related]
4. Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans. Thompson KJ; Kenward PA; Bauer KW; Warchola T; Gauger T; Martinez R; Simister RL; Michiels CC; Llirós M; Reinhard CT; Kappler A; Konhauser KO; Crowe SA Sci Adv; 2019 Nov; 5(11):eaav2869. PubMed ID: 31807693 [TBL] [Abstract][Full Text] [Related]
5. Water near its Supercritical Point and at Alkaline pH for the Production of Ferric Oxides and Silicates in Anoxic Conditions. A New Hypothesis for the Synthesis of Minerals Observed in Banded Iron Formations and for the Related Geobiotropic Chemistry inside Fluid Inclusions. Bassez MP Orig Life Evol Biosph; 2018 Sep; 48(3):289-320. PubMed ID: 30091010 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the physiology and cell-mineral interactions of the marine anoxygenic phototrophic Fe(II) oxidizer Rhodovulum iodosum--implications for Precambrian Fe(II) oxidation. Wu W; Swanner ED; Hao L; Zeitvogel F; Obst M; Pan Y; Kappler A FEMS Microbiol Ecol; 2014 Jun; 88(3):503-15. PubMed ID: 24606418 [TBL] [Abstract][Full Text] [Related]
7. Exploring the secondary mineral products generated by microbial iron respiration in Archean ocean simulations. Nims C; Johnson JE Geobiology; 2022 Nov; 20(6):743-763. PubMed ID: 36087062 [TBL] [Abstract][Full Text] [Related]
8. The role of microaerophilic Fe-oxidizing micro-organisms in producing banded iron formations. Chan CS; Emerson D; Luther GW Geobiology; 2016 Sep; 14(5):509-28. PubMed ID: 27392195 [TBL] [Abstract][Full Text] [Related]
9. Biologically recycled continental iron is a major component in banded iron formations. Li W; Beard BL; Johnson CM Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8193-8. PubMed ID: 26109570 [TBL] [Abstract][Full Text] [Related]
10. Planktonic marine iron oxidizers drive iron mineralization under low-oxygen conditions. Field EK; Kato S; Findlay AJ; MacDonald DJ; Chiu BK; Luther GW; Chan CS Geobiology; 2016 Sep; 14(5):499-508. PubMed ID: 27384464 [TBL] [Abstract][Full Text] [Related]
11. Microbial diversity and iron oxidation at Okuoku-hachikurou Onsen, a Japanese hot spring analog of Precambrian iron formations. Ward LM; Idei A; Terajima S; Kakegawa T; Fischer WW; McGlynn SE Geobiology; 2017 Nov; 15(6):817-835. PubMed ID: 29035022 [TBL] [Abstract][Full Text] [Related]
12. Highly Siderophile Elements and Coupled Fe-Os Isotope Signatures in the Temagami Iron Formation, Canada: Possible Signatures of Neoarchean Seawater Chemistry and Earth's Oxygenation History. Schulz T; Viehmann S; Hezel DC; Koeberl C; Bau M Astrobiology; 2021 Aug; 21(8):924-939. PubMed ID: 34406808 [TBL] [Abstract][Full Text] [Related]
13. Biogenicity of an Early Quaternary iron formation, Milos Island, Greece. Chi Fru E; Ivarsson M; Kilias SP; Frings PJ; Hemmingsson C; Broman C; Bengtson S; Chatzitheodoridis E Geobiology; 2015 May; 13(3):225-44. PubMed ID: 25645266 [TBL] [Abstract][Full Text] [Related]
14. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa. Beukes NJ; Klein C; Kaufman AJ; Hayes JM Econ Geol; 1990; 85(4):663-90. PubMed ID: 11538478 [TBL] [Abstract][Full Text] [Related]
15. The photochemistry of manganese and the origin of Banded Iron Formations. Anbar AD; Holland HD Geochim Cosmochim Acta; 1992 Jul; 56(7):2595-603. PubMed ID: 11537803 [TBL] [Abstract][Full Text] [Related]
16. Phototrophic Fe(II)-oxidation in the chemocline of a ferruginous meromictic lake. Walter XA; Picazo A; Miracle MR; Vicente E; Camacho A; Aragno M; Zopfi J Front Microbiol; 2014; 5():713. PubMed ID: 25538702 [TBL] [Abstract][Full Text] [Related]
17. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks. Tangalos GE; Beard BL; Johnson CM; Alpers CN; Shelobolina ES; Xu H; Konishi H; Roden EE Geobiology; 2010 Jun; 8(3):197-208. PubMed ID: 20374296 [TBL] [Abstract][Full Text] [Related]
18. Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria. Peng C; Bryce C; Sundman A; Kappler A Appl Environ Microbiol; 2019 Apr; 85(8):. PubMed ID: 30796062 [TBL] [Abstract][Full Text] [Related]
19. Oxic Fe(III) reduction could have generated Fe(II) in the photic zone of Precambrian seawater. Swanner ED; Maisch M; Wu W; Kappler A Sci Rep; 2018 Mar; 8(1):4238. PubMed ID: 29523861 [TBL] [Abstract][Full Text] [Related]
20. Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater. Percak-Dennett EM; Beard BL; Xu H; Konishi H; Johnson CM; Roden EE Geobiology; 2011 May; 9(3):205-20. PubMed ID: 21504536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]