These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35035085)

  • 1. Kinematic and dynamic control model of wheeled mobile robot under internet of things and neural network.
    Liu Q; Cong Q
    J Supercomput; 2022; 78(6):8678-8707. PubMed ID: 35035085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Analysis of Trajectory Control of Non-holonomic Mobile Robots Based on Internet of Things Target Image Enhancement Technology and Backpropagation Neural Network.
    Zhao L; Wang G; Fan X; Li Y
    Front Neurorobot; 2021; 15():634340. PubMed ID: 33828475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal Trajectory Planning for Wheeled Mobile Robots under Localization Uncertainty and Energy Efficiency Constraints.
    Zhang X; Huang Y; Rong Y; Li G; Wang H; Liu C
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Practical fixed-time trajectory tracking control of constrained wheeled mobile robots with kinematic disturbances.
    Lu Q; Chen J; Wang Q; Zhang D; Sun M; Su CY
    ISA Trans; 2022 Oct; 129(Pt A):273-286. PubMed ID: 35039151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trajectory Tracking Control Method for Omnidirectional Mobile Robot Based on Self-Organizing Fuzzy Neural Network and Preview Strategy.
    Zhao T; Qin P; Zhong Y
    Entropy (Basel); 2023 Jan; 25(2):. PubMed ID: 36832615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematic Modeling of a Combined System of Multiple Mecanum-Wheeled Robots with Velocity Compensation.
    Li Y; Ge S; Dai S; Zhao L; Yan X; Zheng Y; Shi Y
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trajectory Tracking and Obstacle Avoidance for Wheeled Mobile Robots Based on EMPC With an Adaptive Prediction Horizon.
    Li P; Wang S; Yang H; Zhao H
    IEEE Trans Cybern; 2022 Dec; 52(12):13536-13545. PubMed ID: 34767523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling wheeled mobile robot considering the effects of uncertainty with neuro-fuzzy cognitive map.
    Amirkhani A; Shirzadeh M; Shojaeefard MH; Abraham A
    ISA Trans; 2020 May; 100():454-468. PubMed ID: 31916988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and experimental kinematics of a skid-steering wheeled robot based on a laser scanner sensor.
    Wang T; Wu Y; Liang J; Han C; Chen J; Zhao Q
    Sensors (Basel); 2015 Apr; 15(5):9681-702. PubMed ID: 25919370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive Tracking Control for Robots With an Interneural Computing Scheme.
    Tsai FS; Hsu SY; Shih MH
    IEEE Trans Neural Netw Learn Syst; 2018 Apr; 29(4):832-844. PubMed ID: 28129188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual adaptive dynamic control of mobile robots using neural networks.
    Bugeja MK; Fabri SG; Camilleri L
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):129-41. PubMed ID: 19150763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trajectory Planning of Robot Manipulator Based on RBF Neural Network.
    Song Q; Li S; Bai Q; Yang J; Zhang A; Zhang X; Zhe L
    Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MPC-based high-speed trajectory tracking for 4WIS robot.
    Liu X; Wang W; Li X; Liu F; He Z; Yao Y; Ruan H; Zhang T
    ISA Trans; 2022 Apr; 123():413-424. PubMed ID: 34052011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust tracking control for magnetic wheeled mobile robots using adaptive dynamic programming.
    Fang H; Zhu Y; Dian S; Xiang G; Guo R; Li S
    ISA Trans; 2022 Sep; 128(Pt A):123-132. PubMed ID: 34756757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical Source Searching by Controlling a Wheeled Mobile Robot to Follow an Online Planned Route in Outdoor Field Environments.
    Li JG; Cao ML; Meng QH
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the Path-Tracking Accuracy of a Three-Wheeled Omnidirectional Mobile Robot Designed as a Personal Assistant.
    Palacín J; Rubies E; Clotet E; Martínez D
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive Control of the Mobile Robot under the Deep Long-Short Term Memory Neural Network Model.
    Zheng L
    Comput Intell Neurosci; 2022; 2022():1835798. PubMed ID: 36188702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wheeled Mobile Robots: State of the Art Overview and Kinematic Comparison Among Three Omnidirectional Locomotion Strategies.
    Tagliavini L; Colucci G; Botta A; Cavallone P; Baglieri L; Quaglia G
    J Intell Robot Syst; 2022; 106(3):57. PubMed ID: 36313936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speed Control for Leader-Follower Robot Formation Using Fuzzy System and Supervised Machine Learning.
    Samadi Gharajeh M; Jond HB
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust forward\backward control of wheeled mobile robots.
    Keymasi Khalaji A; Jalalnezhad M
    ISA Trans; 2021 Sep; 115():32-45. PubMed ID: 33454057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.