These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 350351)

  • 1. Energy utilization in the induced release of gamma-aminobutyric acid from synaptosomes.
    Nelson-Krause DC; Howard BD
    Brain Res; 1978 May; 147(1):91-105. PubMed ID: 350351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation-dependent depression of readily releasable neurotransmitter pools in brain.
    Levy WB; Haycock JW; Cotman CW
    Brain Res; 1976 Oct; 115(2):243-56. PubMed ID: 788858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulus-secretion coupling processes in brain: analysis of noradrenaline and gamma-aminobutyric acid release.
    Cotman CW; Haycock JW; White WF
    J Physiol; 1976 Jan; 254(2):475-505. PubMed ID: 765446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential calcium dependence of gamma-aminobutyric acid and acetylcholine release in mouse brain synaptosomes.
    Arias C; Tapia R
    J Neurochem; 1986 Aug; 47(2):396-404. PubMed ID: 2426398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presynaptic membrane protein phosphorylation modulates the release of GABA from preloaded synaptosomes.
    Brennan MJ; Cantrill RC
    J Neurochem; 1980 Aug; 35(2):506-8. PubMed ID: 7452270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of calcium ion on the release of gamma-aminobutyric acid from synaptosomal fraction.
    Asakura T; Hoshino M; Kobayashi T
    J Biochem; 1982 Dec; 92(6):1919-23. PubMed ID: 6819294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of gamma-aminobutyric acid transport in nerve endings: role of extracellular gamma-aminobutyric acid and of cationic fluxes.
    Levi G; Raiteri M
    Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2981-5. PubMed ID: 351622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple mechanisms of transmitter release evoked by "pathologically" elevated extracellular [K+]: involvement of transporter reversal and mitochondrial calcium.
    Raiteri L; Stigliani S; Zedda L; Raiteri M; Bonanno G
    J Neurochem; 2002 Feb; 80(4):706-14. PubMed ID: 11841577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium-stimulated gamma-aminobutyric acid release from neurons and glia.
    Sellström A; Hamberger A
    Brain Res; 1977 Jan; 119(1):189-98. PubMed ID: 830381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective inhibition of synaptosomal gamma-aminobutyric acid uptake by triethyllead: role of energy transduction and chloride ion.
    Seidman BC; Verity MA
    J Neurochem; 1987 Apr; 48(4):1142-9. PubMed ID: 2880929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional assessment of GABA uptake or exchange by synaptosomal fractions.
    Sellstrom A; Venema R; Henn F
    Nature; 1976 Dec; 264(5587):652-3. PubMed ID: 1004608
    [No Abstract]   [Full Text] [Related]  

  • 12. Calcium-dependent release of exogenously loaded gamma-amino-[U-14C]butyrate from synaptosomes: time course of stimulation by potassium, veratridine, and the calcium ionophore, A23187.
    Redburn DA; Shelton D; Cotman CW
    J Neurochem; 1976 Feb; 26(2):297-303. PubMed ID: 815512
    [No Abstract]   [Full Text] [Related]  

  • 13. Properties of [3H]taurine release from crude synaptosomal fractions of rat cerebral cortex.
    Placheta P; Singer E; Sieghart W; Karobath M
    Neurochem Res; 1979 Dec; 4(6):703-12. PubMed ID: 120936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium and potassium ions and accumulation of labelled D-aspartate and GABA in crude synaptosomal fraction from rat cerebral cortex.
    Takagaki G
    J Neurochem; 1978 Jan; 30(1):47-56. PubMed ID: 621521
    [No Abstract]   [Full Text] [Related]  

  • 15. Release of [3H]GABA from in vitro preparations: comparison of the effect of DABA and beta-alanine on the K+ and protoveratrine stimulated release of [3H]GABA from brain slices and synaptosomes.
    Hammerstad JP; Cawthon ML; Lytle CR
    J Neurochem; 1979 Jan; 32(1):195-202. PubMed ID: 759572
    [No Abstract]   [Full Text] [Related]  

  • 16. Sodium-dependent, calmodulin-dependent transmitter release from synaptosomes.
    Sandoval ME; Aquino G; Chávez JL
    Neurosci Lett; 1985 May; 56(3):271-7. PubMed ID: 3927201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A late phase of exocytosis from synaptosomes induced by elevated [Ca2+]i is not blocked by Clostridial neurotoxins.
    Ashton AC; Dolly JO
    J Neurochem; 2000 May; 74(5):1979-88. PubMed ID: 10800941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionophore A23187, verapamil, protonophores, and veratridine influence the release of gamma-aminobutyric acid from synaptosomes by modulation of the plasma membrane potential rather than the cytosolic calcium.
    Sihra TS; Scott IG; Nicholls DG
    J Neurochem; 1984 Dec; 43(6):1624-30. PubMed ID: 6436439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of elevated [K+]O on the release of neurotransmitters from cortical synaptosomes: efflux or secretion?
    Haycock JW; Levy WB; Denner LA; Cotman CW
    J Neurochem; 1978 May; 30(5):1113-25. PubMed ID: 660189
    [No Abstract]   [Full Text] [Related]  

  • 20. Sodium-dependent efflux and exchange of GABA in synaptosomes.
    Simon JR; Martin DL; Kroll M
    J Neurochem; 1974 Nov; 23(5):981-91. PubMed ID: 4154974
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.