These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 35035139)
21. Untargeted LC-MS-based metabolomics revealed specific metabolic changes in cotyledons and roots of Ricinus communis during early seedling establishment under salt stress. Wang Y; Liu J; Yang F; Zhou W; Mao S; Lin J; Yan X Plant Physiol Biochem; 2021 Jun; 163():108-118. PubMed ID: 33826995 [TBL] [Abstract][Full Text] [Related]
22. Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. Kang SM; Shahzad R; Bilal S; Khan AL; Park YG; Lee KE; Asaf S; Khan MA; Lee IJ BMC Microbiol; 2019 Apr; 19(1):80. PubMed ID: 31023221 [TBL] [Abstract][Full Text] [Related]
23. Glycine betaine increases salt tolerance in maize ( Zhu M; Li Q; Zhang Y; Zhang M; Li Z Front Plant Sci; 2022; 13():978304. PubMed ID: 36247603 [TBL] [Abstract][Full Text] [Related]
24. Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. Sheteiwy MS; Shao H; Qi W; Daly P; Sharma A; Shaghaleh H; Hamoud YA; El-Esawi MA; Pan R; Wan Q; Lu H J Sci Food Agric; 2021 Mar; 101(5):2027-2041. PubMed ID: 32949013 [TBL] [Abstract][Full Text] [Related]
25. Exogenous melatonin mitigates salinity-induced damage in olive seedlings by modulating ion homeostasis, antioxidant defense, and phytohormone balance. Zahedi SM; Hosseini MS; Fahadi Hoveizeh N; Gholami R; Abdelrahman M; Tran LP Physiol Plant; 2021 Dec; 173(4):1682-1694. PubMed ID: 34716914 [TBL] [Abstract][Full Text] [Related]
26. Mapping the 'early salinity response' triggered proteome adaptation in contrasting rice genotypes using iTRAQ approach. Lakra N; Kaur C; Singla-Pareek SL; Pareek A Rice (N Y); 2019 Jan; 12(1):3. PubMed ID: 30701331 [TBL] [Abstract][Full Text] [Related]
27. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Sapre S; Gontia-Mishra I; Tiwari S Microbiol Res; 2018 Jan; 206():25-32. PubMed ID: 29146257 [TBL] [Abstract][Full Text] [Related]
28. Application of Exogenous Protectants Mitigates Salt-Induced Na Hamani AKM; Chen J; Soothar MK; Wang G; Shen X; Gao Y; Qiu R Plants (Basel); 2021 Feb; 10(2):. PubMed ID: 33671193 [TBL] [Abstract][Full Text] [Related]
29. Physiological, proteomic, and metabolomic analysis provide insights into Bacillus sp.-mediated salt tolerance in wheat. Zhao Y; Zhang F; Mickan B; Wang D; Wang W Plant Cell Rep; 2022 Jan; 41(1):95-118. PubMed ID: 34546426 [TBL] [Abstract][Full Text] [Related]
30. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica. Waditee-Sirisattha R; Kageyama H; Fukaya M; Rai V; Takabe T FEMS Microbiol Lett; 2015 Dec; 362(23):fnv198. PubMed ID: 26474598 [TBL] [Abstract][Full Text] [Related]
31. High effectiveness of Rhizophagus irregularis is linked to superior modulation of antioxidant defence mechanisms in Cajanus cajan (L.) Millsp. genotypes grown under salinity stress. Pandey R; Garg N Mycorrhiza; 2017 Oct; 27(7):669-682. PubMed ID: 28593465 [TBL] [Abstract][Full Text] [Related]
32. Heme is involved in the exogenous ALA-promoted growth and antioxidant defense system of cucumber seedlings under salt stress. Wu Y; Li J; Wang J; Dawuda MM; Liao W; Meng X; Yuan H; Xie J; Tang Z; Lyu J; Yu J BMC Plant Biol; 2022 Jul; 22(1):329. PubMed ID: 35804328 [TBL] [Abstract][Full Text] [Related]
33. Comparative proteomic analysis of salt-responsive proteins in canola roots by 2-DE and MALDI-TOF MS. Kholghi M; Toorchi M; Bandehagh A; Ostendorp A; Ostendorp S; Hanhart P; Kehr J Biochim Biophys Acta Proteins Proteom; 2019 Mar; 1867(3):227-236. PubMed ID: 30611781 [TBL] [Abstract][Full Text] [Related]
34. Integrated physiological and transcriptional dissection reveals the core genes involving nutrient transport and osmoregulatory substance biosynthesis in allohexaploid wheat seedlings under salt stress. Chen JF; Liu Y; Zhang TY; Zhou ZF; Huang JY; Zhou T; Hua YP BMC Plant Biol; 2022 Oct; 22(1):502. PubMed ID: 36289462 [TBL] [Abstract][Full Text] [Related]
35. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice. Liu CW; Chang TS; Hsu YK; Wang AZ; Yen HC; Wu YP; Wang CS; Lai CC Proteomics; 2014 Aug; 14(15):1759-75. PubMed ID: 24841874 [TBL] [Abstract][Full Text] [Related]
36. Regulation of betaine synthesis by precursor supply and choline monooxygenase expression in Amaranthus tricolor. Bhuiyan NH; Hamada A; Yamada N; Rai V; Hibino T; Takabe T J Exp Bot; 2007; 58(15-16):4203-12. PubMed ID: 18182425 [TBL] [Abstract][Full Text] [Related]
37. Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycinebetaine. Chen S; Gollop N; Heuer B J Exp Bot; 2009; 60(7):2005-19. PubMed ID: 19336390 [TBL] [Abstract][Full Text] [Related]
38. Comparative proteomic analysis of two sesame genotypes with contrasting salinity tolerance in response to salt stress. Zhang Y; Wei M; Liu A; Zhou R; Li D; Dossa K; Wang L; Zhang Y; Gong H; Zhang X; You J J Proteomics; 2019 Jun; 201():73-83. PubMed ID: 31009803 [TBL] [Abstract][Full Text] [Related]
39. Exogenous riboflavin (vitamin B2) application enhances salinity tolerance through the activation of its biosynthesis in rice seedlings under salinity stress. Jiadkong K; Fauzia AN; Yamaguchi N; Ueda A Plant Sci; 2024 Feb; 339():111929. PubMed ID: 38007197 [TBL] [Abstract][Full Text] [Related]
40. Alterations in root proteome of salt-sensitive and tolerant barley lines under salt stress conditions. Mostek A; Börner A; Badowiec A; Weidner S J Plant Physiol; 2015 Feb; 174():166-76. PubMed ID: 25462980 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]