BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3503557)

  • 1. The solid, calcium-phosphate mineral phases in embryonic chick bone characterized by high-voltage electron diffraction.
    Lee DD; Landis WJ; Glimcher MJ
    J Bone Miner Res; 1986 Oct; 1(5):425-32. PubMed ID: 3503557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of electron probe X-ray microanalysis to calcification studies of bone and cartilage.
    Landis WJ
    Scan Electron Microsc; 1979; (2):555-70. PubMed ID: 524025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization.
    Wu Y; Ackerman JL; Strawich ES; Rey C; Kim HM; Glimcher MJ
    Calcif Tissue Int; 2003 May; 72(5):610-26. PubMed ID: 12724829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural studies of the mineral phase of calcifying cartilage.
    Rey C; Beshah K; Griffin R; Glimcher MJ
    J Bone Miner Res; 1991 May; 6(5):515-25. PubMed ID: 2068959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nature of the mineral component of bone and the mechanism of calcification.
    Glimcher MJ
    Instr Course Lect; 1987; 36():49-69. PubMed ID: 3325562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray diffraction of calcined bone tissue: a reliable method for the determination of bone Ca/P molar ratio.
    Balmain N; Legros R; Bonel G
    Calcif Tissue Int; 1982; 34 Suppl 2():S93-8. PubMed ID: 6816455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography.
    Landis WJ; Hodgens KJ; Arena J; Song MJ; McEwen BF
    Microsc Res Tech; 1996 Feb; 33(2):192-202. PubMed ID: 8845518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study.
    Mahamid J; Sharir A; Gur D; Zelzer E; Addadi L; Weiner S
    J Struct Biol; 2011 Jun; 174(3):527-35. PubMed ID: 21440636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nature of phosphate substrate as a major determinant of mineral type formed in matrix vesicle-mediated in vitro mineralization: An FTIR imaging study.
    Garimella R; Bi X; Anderson HC; Camacho NP
    Bone; 2006 Jun; 38(6):811-7. PubMed ID: 16461032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of very young mineral phases of bone by solid state 31phosphorus magic angle sample spinning nuclear magnetic resonance and X-ray diffraction.
    Roberts JE; Bonar LC; Griffin RG; Glimcher MJ
    Calcif Tissue Int; 1992 Jan; 50(1):42-8. PubMed ID: 1739869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A unique protonated phosphate group in bone mineral not present in synthetic calcium phosphates. Identification by phosphorus-31 solid state NMR spectroscopy.
    Wu Y; Glimcher MJ; Rey C; Ackerman JL
    J Mol Biol; 1994 Dec; 244(4):423-35. PubMed ID: 7990131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate dynamics in an urban sewer: a case study of Nancy, France.
    Houhou J; Lartiges BS; Hofmann A; Frappier G; Ghanbaja J; Temgoua A
    Water Res; 2009 Mar; 43(4):1088-100. PubMed ID: 19131087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds.
    Glimcher MJ
    Philos Trans R Soc Lond B Biol Sci; 1984 Feb; 304(1121):479-508. PubMed ID: 6142489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation.
    Bonewald LF; Harris SE; Rosser J; Dallas MR; Dallas SL; Camacho NP; Boyan B; Boskey A
    Calcif Tissue Int; 2003 May; 72(5):537-47. PubMed ID: 12724828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient precursor strategy or very small biological apatite crystals?
    Grynpas MD; Omelon S
    Bone; 2007 Aug; 41(2):162-4. PubMed ID: 17537689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of mineral formation in bone.
    Anderson HC
    Lab Invest; 1989 Mar; 60(3):320-30. PubMed ID: 2648065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observations on embryonic chick-bone crystals by high resolution transmission electron microscopy.
    Boothroyd B
    Clin Orthop Relat Res; 1975; (106):290-310. PubMed ID: 165025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and composition studies on the mineral of newly formed dental enamel: a chemical, x-ray diffraction, and 31P and proton nuclear magnetic resonance study.
    Bonar LC; Shimizu M; Roberts JE; Griffin RG; Glimcher MJ
    J Bone Miner Res; 1991 Nov; 6(11):1167-76. PubMed ID: 1666806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apatite formation on three kinds of bioactive material at an early stage in vivo: a comparative study by transmission electron microscopy.
    Neo M; Nakamura T; Ohtsuki C; Kokubo T; Yamamuro T
    J Biomed Mater Res; 1993 Aug; 27(8):999-1006. PubMed ID: 8408128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization and development of the mineral phase during early ontogenesis of the bony fin rays of the trout Oncorhynchus mykiss.
    Landis WJ; GĂ©raudie J
    Anat Rec; 1990 Dec; 228(4):383-91. PubMed ID: 2285157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.