These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 35035668)
1. Methylglyoxal Scavengers Attenuate Angiogenesis Dysfunction Induced by Methylglyoxal and Oxygen-Glucose Deprivation. Chen W; Huang W; Yang Y; Li K Oxid Med Cell Longev; 2022; 2022():8854457. PubMed ID: 35035668 [TBL] [Abstract][Full Text] [Related]
2. The protective role of isorhamnetin on human brain microvascular endothelial cells from cytotoxicity induced by methylglyoxal and oxygen-glucose deprivation. Li W; Chen Z; Yan M; He P; Chen Z; Dai H J Neurochem; 2016 Feb; 136(3):651-9. PubMed ID: 26578299 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of Methylglyoxal-Induced AGEs/RAGE Expression Contributes to Dermal Protection by N-Acetyl-L-Cysteine. Yang CT; Meng FH; Chen L; Li X; Cen LJ; Wen YH; Li CC; Zhang H Cell Physiol Biochem; 2017; 41(2):742-754. PubMed ID: 28214842 [TBL] [Abstract][Full Text] [Related]
4. Edaravone protected human brain microvascular endothelial cells from methylglyoxal-induced injury by inhibiting AGEs/RAGE/oxidative stress. Li W; Xu H; Hu Y; He P; Ni Z; Xu H; Zhang Z; Dai H PLoS One; 2013; 8(9):e76025. PubMed ID: 24098758 [TBL] [Abstract][Full Text] [Related]
5. Methylglyoxal scavengers attenuate endothelial dysfunction induced by methylglyoxal and high concentrations of glucose. Dhar A; Dhar I; Desai KM; Wu L Br J Pharmacol; 2010 Dec; 161(8):1843-56. PubMed ID: 20825408 [TBL] [Abstract][Full Text] [Related]
6. Intracellular methylglyoxal induces oxidative damage to pancreatic beta cell line INS-1 cell through Ire1α-JNK and mitochondrial apoptotic pathway. Liu C; Huang Y; Zhang Y; Chen X; Kong X; Dong Y Free Radic Res; 2017 Apr; 51(4):337-350. PubMed ID: 28488455 [TBL] [Abstract][Full Text] [Related]
7. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature. Li W; Maloney RE; Aw TY Redox Biol; 2015 Aug; 5():80-90. PubMed ID: 25867911 [TBL] [Abstract][Full Text] [Related]
8. Impact of GLO1 knock down on GLUT4 trafficking and glucose uptake in L6 myoblasts. Engelbrecht B; Stratmann B; Hess C; Tschoepe D; Gawlowski T PLoS One; 2013; 8(5):e65195. PubMed ID: 23717693 [TBL] [Abstract][Full Text] [Related]
9. [Aminoguanidine suppresses methylglyoxal-mediated oxygen-glucose deprivation injury in human brain microvascular endothelial cells]. Li W; Hu Q; Ren X; He P; Xu H; Dai H; Chen Z Zhejiang Da Xue Xue Bao Yi Xue Ban; 2013 May; 42(3):261-6. PubMed ID: 23801613 [TBL] [Abstract][Full Text] [Related]
10. Acute carbonyl stress induces occludin glycation and brain microvascular endothelial barrier dysfunction: role for glutathione-dependent metabolism of methylglyoxal. Li W; Maloney RE; Circu ML; Alexander JS; Aw TY Free Radic Biol Med; 2013 Jan; 54():51-61. PubMed ID: 23108103 [TBL] [Abstract][Full Text] [Related]
11. Alagebrium attenuates methylglyoxal induced oxidative stress and AGE formation in H9C2 cardiac myocytes. Dhar A; Dhar I; Bhat A; Desai KM Life Sci; 2016 Feb; 146():8-14. PubMed ID: 26772824 [TBL] [Abstract][Full Text] [Related]
12. Methylglyoxal impairs glucose metabolism and leads to energy depletion in neuronal cells--protection by carbonyl scavengers. de Arriba SG; Stuchbury G; Yarin J; Burnell J; Loske C; Münch G Neurobiol Aging; 2007 Jul; 28(7):1044-50. PubMed ID: 16781798 [TBL] [Abstract][Full Text] [Related]
13. Ameliorating Methylglyoxal-Induced Progenitor Cell Dysfunction for Tissue Repair in Diabetes. Li H; O'Meara M; Zhang X; Zhang K; Seyoum B; Yi Z; Kaufman RJ; Monks TJ; Wang JM Diabetes; 2019 Jun; 68(6):1287-1302. PubMed ID: 30885990 [TBL] [Abstract][Full Text] [Related]
14. Effect of Cysteine on Methylglyoxal-Induced Renal Damage in Mesangial Cells. Lee JH; Subedi L; Kim SY Cells; 2020 Jan; 9(1):. PubMed ID: 31963523 [TBL] [Abstract][Full Text] [Related]
15. Methylglyoxal triggers human aortic endothelial cell dysfunction via modulation of the K Wang Y; Hall LM; Kujawa M; Li H; Zhang X; O'Meara M; Ichinose T; Wang JM Am J Physiol Cell Physiol; 2019 Jul; 317(1):C68-C81. PubMed ID: 30995106 [TBL] [Abstract][Full Text] [Related]
16. Glycine Suppresses AGE/RAGE Signaling Pathway and Subsequent Oxidative Stress by Restoring Glo1 Function in the Aorta of Diabetic Rats and in HUVECs. Wang Z; Zhang J; Chen L; Li J; Zhang H; Guo X Oxid Med Cell Longev; 2019; 2019():4628962. PubMed ID: 30944692 [TBL] [Abstract][Full Text] [Related]
17. Dicarbonyl-mediated AGEing and diabetic kidney disease. Dimitropoulos A; Rosado CJ; Thomas MC J Nephrol; 2020 Oct; 33(5):909-915. PubMed ID: 32170575 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation. Xue M; Rabbani N; Momiji H; Imbasi P; Anwar MM; Kitteringham N; Park BK; Souma T; Moriguchi T; Yamamoto M; Thornalley PJ Biochem J; 2012 Apr; 443(1):213-22. PubMed ID: 22188542 [TBL] [Abstract][Full Text] [Related]
19. Methylglyoxal-derived hemoglobin advanced glycation end products induce apoptosis and oxidative stress in human umbilical vein endothelial cells. Lee JH; Samsuzzaman M; Park MG; Park SJ; Kim SY Int J Biol Macromol; 2021 Sep; 187():409-421. PubMed ID: 34271050 [TBL] [Abstract][Full Text] [Related]
20. Hyperglycaemia-induced impairment of endothelium-dependent vasorelaxation in rat mesenteric arteries is mediated by intracellular methylglyoxal levels in a pathway dependent on oxidative stress. Brouwers O; Niessen PM; Haenen G; Miyata T; Brownlee M; Stehouwer CD; De Mey JG; Schalkwijk CG Diabetologia; 2010 May; 53(5):989-1000. PubMed ID: 20186387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]