These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35035858)

  • 1. Comparison of CNN Algorithms for Feature Extraction on Fundus Images to Detect Glaucoma.
    Sunanthini V; Deny J; Govinda Kumar E; Vairaprakash S; Govindan P; Sudha S; Muneeswaran V; Thilagaraj M
    J Healthc Eng; 2022; 2022():7873300. PubMed ID: 35035858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmentation and Classification of Glaucoma Using U-Net with Deep Learning Model.
    Sudhan MB; Sinthuja M; Pravinth Raja S; Amutharaj J; Charlyn Pushpa Latha G; Sheeba Rachel S; Anitha T; Rajendran T; Waji YA
    J Healthc Eng; 2022; 2022():1601354. PubMed ID: 35222876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the Role of Convolutional Neural Network Architectures in the Diagnosis of Glaucoma using Color Fundus Photography.
    Atalay E; Özalp O; Devecioğlu ÖC; Erdoğan H; İnce T; Yıldırım N
    Turk J Ophthalmol; 2022 Jun; 52(3):193-200. PubMed ID: 35770344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized convolution neural network based multiple eye disease detection.
    Glaret Subin P; Muthukannan P
    Comput Biol Med; 2022 Jul; 146():105648. PubMed ID: 35751184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of microscopic glaucoma through fundus images using deep transfer learning approach.
    Akbar S; Hassan SA; Shoukat A; Alyami J; Bahaj SA
    Microsc Res Tech; 2022 Jun; 85(6):2259-2276. PubMed ID: 35170136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combined convolutional and recurrent neural network for enhanced glaucoma detection.
    Gheisari S; Shariflou S; Phu J; Kennedy PJ; Agar A; Kalloniatis M; Golzan SM
    Sci Rep; 2021 Jan; 11(1):1945. PubMed ID: 33479405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic Identification of Glaucoma Using Deep Learning Methods.
    Cerentini A; Welfer D; Cordeiro d'Ornellas M; Pereira Haygert CJ; Dotto GN
    Stud Health Technol Inform; 2017; 245():318-321. PubMed ID: 29295107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of glaucoma from fundus images using deep learning techniques.
    Ajitha S; Akkara JD; Judy MV
    Indian J Ophthalmol; 2021 Oct; 69(10):2702-2709. PubMed ID: 34571619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-aided diagnosis of glaucoma using fundus images: A review.
    Hagiwara Y; Koh JEW; Tan JH; Bhandary SV; Laude A; Ciaccio EJ; Tong L; Acharya UR
    Comput Methods Programs Biomed; 2018 Oct; 165():1-12. PubMed ID: 30337064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glaucoma Detection Using Image Processing and Supervised Learning for Classification.
    Joshi S; Partibane B; Hatamleh WA; Tarazi H; Yadav CS; Krah D
    J Healthc Eng; 2022; 2022():2988262. PubMed ID: 35273784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Glaucoma from Fundus Images Using Novel Evolutionary-Based Deep Neural Network.
    Madhumalini M; Devi TM
    J Digit Imaging; 2022 Aug; 35(4):1008-1022. PubMed ID: 35274218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial intelligence based glaucoma and diabetic retinopathy detection using MATLAB - retrained AlexNet convolutional neural network.
    Arias-Serrano I; Velásquez-López PA; Avila-Briones LN; Laurido-Mora FC; Villalba-Meneses F; Tirado-Espin A; Cruz-Varela J; Almeida-Galárraga D
    F1000Res; 2023; 12():14. PubMed ID: 38826575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning assisted detection of glaucomatous optic neuropathy and potential designs for a generalizable model.
    Ko YC; Wey SY; Chen WT; Chang YF; Chen MJ; Chiou SH; Liu CJ; Lee CY
    PLoS One; 2020; 15(5):e0233079. PubMed ID: 32407355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid classification of glaucomatous fundus images.
    Singh H; Saini SS; Lakshminarayanan V
    J Opt Soc Am A Opt Image Sci Vis; 2021 Jun; 38(6):765-774. PubMed ID: 34143145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning.
    Mitra A; Banerjee PS; Roy S; Roy S; Setua SK
    Comput Methods Programs Biomed; 2018 Oct; 165():25-35. PubMed ID: 30337079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D augmented fundus images for identifying glaucoma via transferred convolutional neural networks.
    Wang P; Yuan M; He Y; Sun J
    Int Ophthalmol; 2021 Jun; 41(6):2065-2072. PubMed ID: 33655390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images.
    Mvoulana A; Kachouri R; Akil M
    Comput Med Imaging Graph; 2019 Oct; 77():101643. PubMed ID: 31541937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated detection of leukemia by pretrained deep neural networks and transfer learning: A comparison.
    Anilkumar KK; Manoj VJ; Sagi TM
    Med Eng Phys; 2021 Dec; 98():8-19. PubMed ID: 34848042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Machine-Learning Classification Models for Glaucoma Management.
    An G; Omodaka K; Tsuda S; Shiga Y; Takada N; Kikawa T; Nakazawa T; Yokota H; Akiba M
    J Healthc Eng; 2018; 2018():6874765. PubMed ID: 30018755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetic Glaucoma Segmentation and Classification Strategies Using Depth Optimized Machine Learning Strategies.
    Elizabeth Jesi V; Mohamed Aslam S; Ramkumar G; Sabarivani A; Gnanasekar AK; Thomas P
    Contrast Media Mol Imaging; 2021; 2021():5709257. PubMed ID: 34908911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.