These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35036536)

  • 21. A Quadruped Robot with Three-Dimensional Flexible Legs.
    Huang W; Xiao J; Zeng F; Lu P; Lin G; Hu W; Lin X; Wu Y
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic Turning of a Soft Quadruped Robot by Changing Phase Difference.
    Tanaka H; Chen TY; Hosoda K
    Front Robot AI; 2021; 8():629523. PubMed ID: 33969002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stability-Guaranteed and High Terrain Adaptability Static Gait for Quadruped Robots.
    Hao Q; Wang Z; Wang J; Chen G
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stability Study and Simulation of Quadruped Robots with Variable Parameters.
    Cong Q; Shi X; Wang J; Xiong Y; Su B; Xu W; Liu H; Zhou K; Jiang L; Tian W
    Appl Bionics Biomech; 2022; 2022():9968042. PubMed ID: 35096142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Variable stiffness locomotion with guaranteed stability for quadruped robots traversing uneven terrains.
    Zhao X; Wu Y; You Y; Laurenzi A; Tsagarakis N
    Front Robot AI; 2022; 9():874290. PubMed ID: 36105760
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Gait Design and Trajectory Planning of a Gecko-Inspired Climbing Robot.
    Li X; Wang W; Wu S; Zhu P; Zhao F; Wang L
    Appl Bionics Biomech; 2018; 2018():2648502. PubMed ID: 29849755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accurate and robust localization for walking robots fusing kinematics, inertial, vision and LIDAR.
    Fallon M
    Interface Focus; 2018 Aug; 8(4):20180015. PubMed ID: 29951194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Bio-Inspired Compliance Planning and Implementation Method for Hydraulically Actuated Quadruped Robots with Consideration of Ground Stiffness.
    Zhang X; Yi H; Liu J; Li Q; Luo X
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920616
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sprawling Quadruped Robot Driven by Decentralized Control With Cross-Coupled Sensory Feedback Between Legs and Trunk.
    Suzuki S; Kano T; Ijspeert AJ; Ishiguro A
    Front Neurorobot; 2020; 14():607455. PubMed ID: 33488377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptive walking control for quadruped robot by using oscillation patterns.
    Zhang Y; Qian Y; Ding Y; Hou B; Wang R
    Sci Rep; 2023 Nov; 13(1):19756. PubMed ID: 37957235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Research on Walking Gait Planning and Simulation of a Novel Hybrid Biped Robot.
    Sun P; Gu Y; Mao H; Chen Z; Li Y
    Biomimetics (Basel); 2023 Jun; 8(2):. PubMed ID: 37366853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A fault tolerant gait for a hexapod robot over uneven terrain.
    Yang JM; Kim JH
    IEEE Trans Syst Man Cybern B Cybern; 2000; 30(1):172-80. PubMed ID: 18244739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bidirectional Locomotion of Soft Inchworm Crawler Using Dynamic Gaits.
    Du L; Ma S; Tokuda K; Tian Y; Li L
    Front Robot AI; 2022; 9():899850. PubMed ID: 35783025
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep Learning Vision System for Quadruped Robot Gait Pattern Regulation.
    Cruz Ulloa C; Sánchez L; Del Cerro J; Barrientos A
    Biomimetics (Basel); 2023 Jul; 8(3):. PubMed ID: 37504177
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Terrain-Perception-Free Quadrupedal Spinning Locomotion on Versatile Terrains: Modeling, Analysis, and Experimental Validation.
    Zhu H; Wang D; Boyd N; Zhou Z; Ruan L; Zhang A; Ding N; Zhao Y; Luo J
    Front Robot AI; 2021; 8():724138. PubMed ID: 34765648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Echo State Networks for Estimating Exteroceptive Conditions From Proprioceptive States in Quadruped Robots.
    Calandra M; Patanè L; Sun T; Arena P; Manoonpong P
    Front Neurorobot; 2021; 15():655330. PubMed ID: 34497502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brainless Walking: Animal Gaits Emerge From an Actuator Characteristic.
    Masuda Y; Naniwa K; Ishikawa M; Osuka K
    Front Robot AI; 2021; 8():629679. PubMed ID: 33996924
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast and Slow Adaptations of Interlimb Coordination
    Aoi S; Amano T; Fujiki S; Senda K; Tsuchiya K
    Front Robot AI; 2021; 8():697612. PubMed ID: 34422913
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decentralized control with cross-coupled sensory feedback between body and limbs in sprawling locomotion.
    Suzuki S; Kano T; Ijspeert AJ; Ishiguro A
    Bioinspir Biomim; 2019 Sep; 14(6):066010. PubMed ID: 31469116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fall prediction, control, and recovery of quadruped robots.
    Sun H; Yang J; Jia Y; Zhang C; Yu X; Wang C
    ISA Trans; 2024 Aug; 151():86-102. PubMed ID: 38851926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.