These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35036725)

  • 21. Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications.
    Chen Y; Zhang L; Yang Y; Pang B; Xu W; Duan G; Jiang S; Zhang K
    Adv Mater; 2021 Mar; 33(11):e2005569. PubMed ID: 33538067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative study of aerogels obtained from differently prepared nanocellulose fibers.
    Chen W; Li Q; Wang Y; Yi X; Zeng J; Yu H; Liu Y; Li J
    ChemSusChem; 2014 Jan; 7(1):154-61. PubMed ID: 24420495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of the Cellulose Nanofibers (CNFs) Aerogel Loading TiO
    Li K; Zhang X; Qin Y; Li Y
    Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34199425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellulose Nanofibril Aerogels: Synergistic Improvement of Hydrophobicity, Strength, and Thermal Stability via Cross-Linking with Diisocyanate.
    Jiang F; Hsieh YL
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2825-2834. PubMed ID: 28079358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hierarchical Assembly of Nanocellulose-Based Filaments by Interfacial Complexation.
    Zhang K; Liimatainen H
    Small; 2018 Sep; 14(38):e1801937. PubMed ID: 30151995
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and Characterization of Nanocellulose/Chitosan Aerogel Scaffolds Using Chemical-Free Approach.
    Rizal S; Yahya EB; Abdul Khalil HPS; Abdullah CK; Marwan M; Ikramullah I; Muksin U
    Gels; 2021 Dec; 7(4):. PubMed ID: 34940306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemically Cross-Linked Cellulose Nanocrystal Aerogels for Effective Removal of Cation Dye.
    Liang L; Zhang S; Goenaga GA; Meng X; Zawodzinski TA; Ragauskas AJ
    Front Chem; 2020; 8():570. PubMed ID: 32733852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cellulose Aerogels: Synthesis, Applications, and Prospects.
    Long LY; Weng YX; Wang YZ
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966656
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold.
    Fu J; Wang S; He C; Lu Z; Huang J; Chen Z
    Carbohydr Polym; 2016 Aug; 147():89-96. PubMed ID: 27178912
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced Mechanical Stability and Hydrophobicity of Cellulose Aerogels via Quantitative Doping of Nano-Lignin.
    Wang X; Yang X; Wu Z; Liu X; Li Q; Zhu W; Jiang Y; Hu L
    Polymers (Basel); 2023 Mar; 15(5):. PubMed ID: 36904557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly compressible nanocellulose aerogels with a cellular structure for high-performance adsorption of Cu(II).
    Mo L; Tan Y; Shen Y; Zhang S
    Chemosphere; 2022 Mar; 291(Pt 2):132887. PubMed ID: 34785178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates.
    Korhonen JT; Hiekkataipale P; Malm J; Karppinen M; Ikkala O; Ras RH
    ACS Nano; 2011 Mar; 5(3):1967-74. PubMed ID: 21361349
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacterial Nanocellulose/MoS
    Ferreira-Neto EP; Ullah S; da Silva TCA; Domeneguetti RR; Perissinotto AP; de Vicente FS; Rodrigues-Filho UP; Ribeiro SJL
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41627-41643. PubMed ID: 32809794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanocellulose-Based Composite Materials Used in Drug Delivery Systems.
    Huo Y; Liu Y; Xia M; Du H; Lin Z; Li B; Liu H
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808693
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional Materials from Nanocellulose: Utilizing Structure-Property Relationships in Bottom-Up Fabrication.
    De France K; Zeng Z; Wu T; Nyström G
    Adv Mater; 2021 Jul; 33(28):e2000657. PubMed ID: 32267033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexible and Sensitivity-Adjustable Pressure Sensors Based on Carbonized Bacterial Nanocellulose/Wood-Derived Cellulose Nanofibril Composite Aerogels.
    Chen S; Chen Y; Li D; Xu Y; Xu F
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8754-8763. PubMed ID: 33590754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biohybrid Hydrogel and Aerogel from Self-Assembled Nanocellulose and Nanochitin as a High-Efficiency Adsorbent for Water Purification.
    Zhang X; Elsayed I; Navarathna C; Schueneman GT; Hassan EB
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46714-46725. PubMed ID: 31741369
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds.
    Osorio DA; Lee BEJ; Kwiecien JM; Wang X; Shahid I; Hurley AL; Cranston ED; Grandfield K
    Acta Biomater; 2019 Mar; 87():152-165. PubMed ID: 30710708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Superinsulating nanocellulose aerogels: Effect of density and nanofiber alignment.
    Sivaraman D; Siqueira G; Maurya AK; Zhao S; Koebel MM; Nyström G; Lattuada M; Malfait WJ
    Carbohydr Polym; 2022 Sep; 292():119675. PubMed ID: 35725170
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of antibacterial aerogel based on ɛ-poly-l-lysine/nanocellulose by using citric acid as crosslinker.
    Wang C; Cao H; Jia L; Liu W; Liu P
    Carbohydr Polym; 2022 Sep; 291():119568. PubMed ID: 35698390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.