These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35036872)

  • 1. Distribution grid impacts of electric vehicles: A California case study.
    Jenn A; Highleyman J
    iScience; 2022 Jan; 25(1):103686. PubMed ID: 35036872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of electric vehicle charging demand on power distribution grid congestion.
    Li Y; Jenn A
    Proc Natl Acad Sci U S A; 2024 Apr; 121(18):e2317599121. PubMed ID: 38648474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Private versus Shared, Automated Electric Vehicles for U.S. Personal Mobility: Energy Use, Greenhouse Gas Emissions, Grid Integration, and Cost Impacts.
    Sheppard CJR; Jenn AT; Greenblatt JB; Bauer GS; Gerke BF
    Environ Sci Technol; 2021 Mar; 55(5):3229-3239. PubMed ID: 33566604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-Demand Automotive Fleet Electrification Can Catalyze Global Transportation Decarbonization and Smart Urban Mobility.
    Bauer G; Zheng C; Greenblatt JB; Shaheen S; Kammen DM
    Environ Sci Technol; 2020 Jun; 54(12):7027-7033. PubMed ID: 32401027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transportation emissions scenarios for New York City under different carbon intensities of electricity and electric vehicle adoption rates.
    Isik M; Dodder R; Kaplan PO
    Nat Energy; 2021 Jan; 6():92-104. PubMed ID: 34804594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charging Strategies to Minimize Greenhouse Gas Emissions of Electrified Delivery Vehicles.
    Woody M; Vaishnav P; Craig MT; Lewis GM; Keoleian GA
    Environ Sci Technol; 2021 Jul; 55(14):10108-10120. PubMed ID: 34240846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon emission of energy consumption of the electric vehicle development scenario.
    Wang M; Wang Y; Chen L; Yang Y; Li X
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):42401-42413. PubMed ID: 33813710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. China Electricity Generation Greenhouse Gas Emission Intensity in 2030: Implications for Electric Vehicles.
    Shen W; Han W; Wallington TJ; Winkler SL
    Environ Sci Technol; 2019 May; 53(10):6063-6072. PubMed ID: 31021614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forecasted datasets of electric vehicle consumption on the electricity grid of Spain.
    Cama-Pinto D; Martínez-Lao JA; Solano-Escorcia AF; Cama-Pinto A
    Data Brief; 2020 Aug; 31():105823. PubMed ID: 32632374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greenhouse gas implications of fleet electrification based on big data-informed individual travel patterns.
    Cai H; Xu M
    Environ Sci Technol; 2013 Aug; 47(16):9035-43. PubMed ID: 23869607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal allocation of distributed energy resources to cater the stochastic E-vehicle loading and natural disruption in low voltage distribution grid.
    Saini DK; Yadav M; Pal N
    Sci Rep; 2024 Jul; 14(1):17057. PubMed ID: 39048650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.
    Ahn Y; Yeo H
    PLoS One; 2015; 10(11):e0141307. PubMed ID: 26575845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.
    Milanés-Montero MI; Gallardo-Lozano J; Romero-Cadaval E; González-Romera E
    Sensors (Basel); 2011; 11(10):9313-26. PubMed ID: 22163697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospective time-resolved LCA of fully electric supercap vehicles in Germany.
    Zimmermann BM; Dura H; Baumann MJ; Weil MR
    Integr Environ Assess Manag; 2015 Jul; 11(3):425-34. PubMed ID: 25891858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An open tool for creating battery-electric vehicle time series from empirical data, emobpy.
    Gaete-Morales C; Kramer H; Schill WP; Zerrahn A
    Sci Data; 2021 Jun; 8(1):152. PubMed ID: 34117257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the role of behavior and social class in electric vehicle adoption and charging demands.
    Lee R; Brown S
    iScience; 2021 Aug; 24(8):102914. PubMed ID: 34409273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Power supply disruptions deter electric vehicle adoption in cities in China.
    Qiu YL; Deng N; Wang B; Shen X; Wang Z; Hultman N; Shi H; Liu J; Wang YD
    Nat Commun; 2024 Jul; 15(1):6041. PubMed ID: 39019903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles.
    Shen W; Han W; Wallington TJ
    Environ Sci Technol; 2014 Jun; 48(12):7069-75. PubMed ID: 24853334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies and sustainability in fast charging station deployment for electric vehicles.
    Mohammed A; Saif O; Abo-Adma M; Fahmy A; Elazab R
    Sci Rep; 2024 Jan; 14(1):283. PubMed ID: 38168937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing justice in California's transition to electric vehicles.
    Hennessy EM; Syal SM
    iScience; 2023 Jul; 26(7):106856. PubMed ID: 37534146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.