These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35036922)

  • 1. LYRUS: a machine learning model for predicting the pathogenicity of missense variants.
    Lai J; Yang J; Gamsiz Uzun ED; Rubenstein BM; Sarkar IN
    Bioinform Adv; 2022; 2(1):vbab045. PubMed ID: 35036922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The DBSAV Database: Predicting Deleteriousness of Single Amino Acid Variations in the Human Proteome.
    Pei J; Grishin NV
    J Mol Biol; 2021 May; 433(11):166915. PubMed ID: 33676930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ASCARIS: Positional feature annotation and protein structure-based representation of single amino acid variations.
    Cankara F; Doğan T
    Comput Struct Biotechnol J; 2023; 21():4743-4758. PubMed ID: 37822561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DARVIC: Dihedral angle-reliant variant impact classifier for functional prediction of missense VUS.
    Lagniton PNP; Tam B; Wang SM
    Comput Methods Programs Biomed; 2023 Aug; 238():107596. PubMed ID: 37201251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhapsody: predicting the pathogenicity of human missense variants.
    Ponzoni L; Peñaherrera DA; Oltvai ZN; Bahar I
    Bioinformatics; 2020 May; 36(10):3084-3092. PubMed ID: 32101277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MAGPIE: accurate pathogenic prediction for multiple variant types using machine learning approach.
    Liu Y; Zhang T; You N; Wu S; Shen N
    Genome Med; 2024 Jan; 16(1):3. PubMed ID: 38185709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathogenicity Prediction of Single Amino Acid Variants With Machine Learning Model Based on Protein Structural Energies.
    Wu TH; Lin PC; Chou HH; Shen MR; Hsieh SY
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):606-615. PubMed ID: 34962874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting functional effect of missense variants using graph attention neural networks.
    Zhang H; Xu MS; Fan X; Chung WK; Shen Y
    Nat Mach Intell; 2022 Nov; 4(11):1017-1028. PubMed ID: 37484202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quality control of single amino acid variations detected by tandem mass spectrometry.
    Yi X; Wang B; An Z; Gong F; Li J; Fu Y
    J Proteomics; 2018 Sep; 187():144-151. PubMed ID: 30012419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of pathogenic single amino acid substitutions using molecular fragment descriptors.
    Zadorozhny A; Smirnov A; Filimonov D; Lagunin A
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37535750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A plugin for the Ensembl Variant Effect Predictor that uses MaxEntScan to predict variant spliceogenicity.
    Shamsani J; Kazakoff SH; Armean IM; McLaren W; Parsons MT; Thompson BA; O'Mara TA; Hunt SE; Waddell N; Spurdle AB
    Bioinformatics; 2019 Jul; 35(13):2315-2317. PubMed ID: 30475984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the pathogenicity of missense variants using features derived from AlphaFold2.
    Schmidt A; Röner S; Mai K; Klinkhammer H; Kircher M; Ludwig KU
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37084271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3Cnet: pathogenicity prediction of human variants using multitask learning with evolutionary constraints.
    Won DG; Kim DW; Woo J; Lee K
    Bioinformatics; 2021 Dec; 37(24):4626-4634. PubMed ID: 34270679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FunSAV: predicting the functional effect of single amino acid variants using a two-stage random forest model.
    Wang M; Zhao XM; Takemoto K; Xu H; Li Y; Akutsu T; Song J
    PLoS One; 2012; 7(8):e43847. PubMed ID: 22937107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SVPath: an accurate pipeline for predicting the pathogenicity of human exon structural variants.
    Yang Y; Wang X; Zhou D; Wei DQ; Peng S
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35180781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TransEFVP: A Two-Stage Approach for the Prediction of Human Pathogenic Variants Based on Protein Sequence Embedding Fusion.
    Yan Z; Ge F; Liu Y; Zhang Y; Li F; Song J; Yu DJ
    J Chem Inf Model; 2024 Feb; 64(4):1407-1418. PubMed ID: 38334115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepSurf: a surface-based deep learning approach for the prediction of ligand binding sites on proteins.
    Mylonas SK; Axenopoulos A; Daras P
    Bioinformatics; 2021 Jul; 37(12):1681-1690. PubMed ID: 33471069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prioritizing genes for systematic variant effect mapping.
    Kuang D; Truty R; Weile J; Johnson B; Nykamp K; Araya C; Nussbaum RL; Roth FP
    Bioinformatics; 2021 Apr; 36(22-23):5448-5455. PubMed ID: 33300982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DBFE: distribution-based feature extraction from structural variants in whole-genome data.
    Piernik M; Brzezinski D; Sztromwasser P; Pacewicz K; Majer-Burman W; Gniot M; Sielski D; Bryzghalov O; Wozna A; Zawadzki P
    Bioinformatics; 2022 Sep; 38(19):4466-4473. PubMed ID: 35929780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved mutant function prediction via PACT: Protein Analysis and Classifier Toolkit.
    Klesmith JR; Hackel BJ
    Bioinformatics; 2019 Aug; 35(16):2707-2712. PubMed ID: 30590444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.