BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35037020)

  • 1. GPS-Uber: a hybrid-learning framework for prediction of general and E3-specific lysine ubiquitination sites.
    Wang C; Tan X; Tang D; Gou Y; Han C; Ning W; Lin S; Zhang W; Chen M; Peng D; Xue Y
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35037020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UbiNet 2.0: a verified, classified, annotated and updated database of E3 ubiquitin ligase-substrate interactions.
    Li Z; Chen S; Jhong JH; Pang Y; Huang KY; Li S; Lee TY
    Database (Oxford); 2021 Mar; 2021():. PubMed ID: 33693667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GPS-Palm: a deep learning-based graphic presentation system for the prediction of S-palmitoylation sites in proteins.
    Ning W; Jiang P; Guo Y; Wang C; Tan X; Zhang W; Peng D; Xue Y
    Brief Bioinform; 2021 Mar; 22(2):1836-1847. PubMed ID: 32248222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Diversity of Ubiquitin E3 Ligase.
    Toma-Fukai S; Shimizu T
    Molecules; 2021 Nov; 26(21):. PubMed ID: 34771091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and identification of ubiquitin conjugation sites with E3 ligase recognition specificities.
    Nguyen VN; Huang KY; Huang CH; Chang TH; Bretaña N; Lai K; Weng J; Lee TY
    BMC Bioinformatics; 2015; 16 Suppl 1(Suppl 1):S1. PubMed ID: 25707307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HybridSucc: A Hybrid-learning Architecture for General and Species-specific Succinylation Site Prediction.
    Ning W; Xu H; Jiang P; Cheng H; Deng W; Guo Y; Xue Y
    Genomics Proteomics Bioinformatics; 2020 Apr; 18(2):194-207. PubMed ID: 32861878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomics strategy to identify substrates of LNX, a PDZ domain-containing E3 ubiquitin ligase.
    Guo Z; Song E; Ma S; Wang X; Gao S; Shao C; Hu S; Jia L; Tian R; Xu T; Gao Y
    J Proteome Res; 2012 Oct; 11(10):4847-62. PubMed ID: 22889411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated bioinformatics platform for investigating the human E3 ubiquitin ligase-substrate interaction network.
    Li Y; Xie P; Lu L; Wang J; Diao L; Liu Z; Guo F; He Y; Liu Y; Huang Q; Liang H; Li D; He F
    Nat Commun; 2017 Aug; 8(1):347. PubMed ID: 28839186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3.
    Kamadurai HB; Qiu Y; Deng A; Harrison JS; Macdonald C; Actis M; Rodrigues P; Miller DJ; Souphron J; Lewis SM; Kurinov I; Fujii N; Hammel M; Piper R; Kuhlman B; Schulman BA
    Elife; 2013 Aug; 2():e00828. PubMed ID: 23936628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional diversity and structural disorder in the human ubiquitination pathway.
    Bhowmick P; Pancsa R; Guharoy M; Tompa P
    PLoS One; 2013; 8(5):e65443. PubMed ID: 23734257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new scheme to discover functional associations and regulatory networks of E3 ubiquitin ligases.
    Huang KY; Weng JT; Lee TY; Weng SL
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):3. PubMed ID: 26818115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic interactions of proteins in complex networks: identifying the complete set of interacting E2s for functional investigation of E3-dependent protein ubiquitination.
    Christensen DE; Klevit RE
    FEBS J; 2009 Oct; 276(19):5381-9. PubMed ID: 19712108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GPS-SUMO 2.0: an updated online service for the prediction of SUMOylation sites and SUMO-interacting motifs.
    Gou Y; Liu D; Chen M; Wei Y; Huang X; Han C; Feng Z; Zhang C; Lu T; Peng D; Xue Y
    Nucleic Acids Res; 2024 May; ():. PubMed ID: 38709873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UbcH5 Interacts with Substrates to Participate in Lysine Selection with the E3 Ubiquitin Ligase CHIP.
    Kanack A; Vittal V; Haver H; Keppel T; Gundry RL; Klevit RE; Scaglione KM
    Biochemistry; 2020 Jun; 59(22):2078-2088. PubMed ID: 32401531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RING domain E3 ubiquitin ligases.
    Deshaies RJ; Joazeiro CA
    Annu Rev Biochem; 2009; 78():399-434. PubMed ID: 19489725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitin-conjugating enzyme E2 D1 (Ube2D1) mediates lysine-independent ubiquitination of the E3 ubiquitin ligase March-I.
    Lei L; Bandola-Simon J; Roche PA
    J Biol Chem; 2018 Mar; 293(11):3904-3912. PubMed ID: 29414787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. E3 ubiquitin-protein ligase TRIM21-mediated lysine capture by UBE2E1 reveals substrate-targeting mode of a ubiquitin-conjugating E2.
    Anandapadamanaban M; Kyriakidis NC; Csizmók V; Wallenhammar A; Espinosa AC; Ahlner A; Round AR; Trewhella J; Moche M; Wahren-Herlenius M; Sunnerhagen M
    J Biol Chem; 2019 Jul; 294(30):11404-11419. PubMed ID: 31160341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design Principles Involving Protein Disorder Facilitate Specific Substrate Selection and Degradation by the Ubiquitin-Proteasome System.
    Guharoy M; Bhowmick P; Tompa P
    J Biol Chem; 2016 Mar; 291(13):6723-31. PubMed ID: 26851277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme-substrate relationships in the ubiquitin system: approaches for identifying substrates of ubiquitin ligases.
    O'Connor HF; Huibregtse JM
    Cell Mol Life Sci; 2017 Sep; 74(18):3363-3375. PubMed ID: 28455558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonproteolytic K29-Linked Ubiquitination of the PB2 Replication Protein of Influenza A Viruses by Proviral Cullin 4-Based E3 Ligases.
    Karim M; Biquand E; Declercq M; Jacob Y; van der Werf S; Demeret C
    mBio; 2020 Apr; 11(2):. PubMed ID: 32265326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.