These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 35037218)
1. Managing High-Density Genotyping Data with Gigwa. Sempéré G; Larmande P; Rouard M Methods Mol Biol; 2022; 2443():415-427. PubMed ID: 35037218 [TBL] [Abstract][Full Text] [Related]
2. Gigwa v2-Extended and improved genotype investigator. Sempéré G; Pétel A; Rouard M; Frouin J; Hueber Y; De Bellis F; Larmande P Gigascience; 2019 May; 8(5):. PubMed ID: 31077313 [TBL] [Abstract][Full Text] [Related]
3. Gigwa-Genotype investigator for genome-wide analyses. Sempéré G; Philippe F; Dereeper A; Ruiz M; Sarah G; Larmande P Gigascience; 2016 Jun; 5():25. PubMed ID: 27267926 [TBL] [Abstract][Full Text] [Related]
4. SNiPlay3: a web-based application for exploration and large scale analyses of genomic variations. Dereeper A; Homa F; Andres G; Sempere G; Sarah G; Hueber Y; Dufayard JF; Ruiz M Nucleic Acids Res; 2015 Jul; 43(W1):W295-300. PubMed ID: 26040700 [TBL] [Abstract][Full Text] [Related]
5. Genome-Wide SNP Calling from Genotyping by Sequencing (GBS) Data: A Comparison of Seven Pipelines and Two Sequencing Technologies. Torkamaneh D; Laroche J; Belzile F PLoS One; 2016; 11(8):e0161333. PubMed ID: 27547936 [TBL] [Abstract][Full Text] [Related]
6. Genotyping by multiplexed sequencing (GMS): A customizable platform for genomic selection. Ruff TM; Marston EJ; Eagle JD; Sthapit SR; Hooker MA; Skinner DZ; See DR PLoS One; 2020; 15(5):e0229207. PubMed ID: 32357171 [TBL] [Abstract][Full Text] [Related]
7. Genotyping-by-Sequencing and Its Application to Oat Genomic Research. Fu YB; Yang MH Methods Mol Biol; 2017; 1536():169-187. PubMed ID: 28132151 [TBL] [Abstract][Full Text] [Related]
8. Fast-GBS: a new pipeline for the efficient and highly accurate calling of SNPs from genotyping-by-sequencing data. Torkamaneh D; Laroche J; Bastien M; Abed A; Belzile F BMC Bioinformatics; 2017 Jan; 18(1):5. PubMed ID: 28049422 [TBL] [Abstract][Full Text] [Related]
9. VCF2CAPS-A high-throughput CAPS marker design from VCF files and its test-use on a genotyping-by-sequencing (GBS) dataset. Wesołowski W; Domnicz B; Augustynowicz J; Szklarczyk M PLoS Comput Biol; 2021 May; 17(5):e1008980. PubMed ID: 34014924 [TBL] [Abstract][Full Text] [Related]
10. A fully automated pipeline for quantitative genotype calling from next generation sequencing data in autopolyploids. Pereira GS; Garcia AAF; Margarido GRA BMC Bioinformatics; 2018 Nov; 19(1):398. PubMed ID: 30382832 [TBL] [Abstract][Full Text] [Related]
11. Comparison of seven SNP calling pipelines for the next-generation sequencing data of chickens. Liu J; Shen Q; Bao H PLoS One; 2022; 17(1):e0262574. PubMed ID: 35100292 [TBL] [Abstract][Full Text] [Related]
12. Low-depth genotyping-by-sequencing (GBS) in a bovine population: strategies to maximize the selection of high quality genotypes and the accuracy of imputation. Brouard JS; Boyle B; Ibeagha-Awemu EM; Bissonnette N BMC Genet; 2017 Apr; 18(1):32. PubMed ID: 28381212 [TBL] [Abstract][Full Text] [Related]
13. Reference-free SNP calling: improved accuracy by preventing incorrect calls from repetitive genomic regions. Dou J; Zhao X; Fu X; Jiao W; Wang N; Zhang L; Hu X; Wang S; Bao Z Biol Direct; 2012 Jun; 7():17. PubMed ID: 22682067 [TBL] [Abstract][Full Text] [Related]
14. mInDel: a high-throughput and efficient pipeline for genome-wide InDel marker development. Lv Y; Liu Y; Zhao H BMC Genomics; 2016 Apr; 17():290. PubMed ID: 27079510 [TBL] [Abstract][Full Text] [Related]
15. Generation of SNP datasets for orangutan population genomics using improved reduced-representation sequencing and direct comparisons of SNP calling algorithms. Greminger MP; Stölting KN; Nater A; Goossens B; Arora N; Bruggmann R; Patrignani A; Nussberger B; Sharma R; Kraus RH; Ambu LN; Singleton I; Chikhi L; van Schaik CP; Krützen M BMC Genomics; 2014 Jan; 15():16. PubMed ID: 24405840 [TBL] [Abstract][Full Text] [Related]
16. GenESysV: a fast, intuitive and scalable genome exploration open source tool for variants generated from high-throughput sequencing projects. Zia M; Spurgeon P; Levesque A; Furlani T; Wang J BMC Bioinformatics; 2019 Jan; 20(1):61. PubMed ID: 30704396 [TBL] [Abstract][Full Text] [Related]
18. Impact of genotyping errors on statistical power of association tests in genomic analyses: A case study. Hou L; Sun N; Mane S; Sayward F; Rajeevan N; Cheung KH; Cho K; Pyarajan S; Aslan M; Miller P; Harvey PD; Gaziano JM; Concato J; Zhao H Genet Epidemiol; 2017 Feb; 41(2):152-162. PubMed ID: 28019059 [TBL] [Abstract][Full Text] [Related]
19. Alignment-Free Genotyping of Known Variations with MALVA. Bernardini G; Denti L; Previtali M Methods Mol Biol; 2022; 2493():247-256. PubMed ID: 35751819 [TBL] [Abstract][Full Text] [Related]
20. An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments. Duitama J; Quintero JC; Cruz DF; Quintero C; Hubmann G; Foulquié-Moreno MR; Verstrepen KJ; Thevelein JM; Tohme J Nucleic Acids Res; 2014 Apr; 42(6):e44. PubMed ID: 24413664 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]