These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 35037255)
1. A SPX domain-containing phosphate transporter from Rhizophagus irregularis handles phosphate homeostasis at symbiotic interface of arbuscular mycorrhizas. Xie X; Lai W; Che X; Wang S; Ren Y; Hu W; Chen H; Tang M New Phytol; 2022 Apr; 234(2):650-671. PubMed ID: 35037255 [TBL] [Abstract][Full Text] [Related]
2. A Che X; Wang S; Ren Y; Xie X; Hu W; Chen H; Tang M Microbiol Spectr; 2022 Dec; 10(6):e0147022. PubMed ID: 36227088 [TBL] [Abstract][Full Text] [Related]
3. A transcriptional activator from Zhang S; Nie Y; Fan X; Wei W; Chen H; Xie X; Tang M Front Microbiol; 2022; 13():1114089. PubMed ID: 36741887 [TBL] [Abstract][Full Text] [Related]
4. Functional analysis of the novel mycorrhiza-specific phosphate transporter AsPT1 and PHT1 family from Astragalus sinicus during the arbuscular mycorrhizal symbiosis. Xie X; Huang W; Liu F; Tang N; Liu Y; Lin H; Zhao B New Phytol; 2013 May; 198(3):836-852. PubMed ID: 23442117 [TBL] [Abstract][Full Text] [Related]
5. Multiple PHT1 family phosphate transporters are recruited for mycorrhizal symbiosis in Eucalyptus grandis and conserved PHT1;4 is a requirement for the arbuscular mycorrhizal symbiosis. Che X; Lai W; Wang S; Wang X; Hu W; Chen H; Xie X; Tang M Tree Physiol; 2022 Oct; 42(10):2020-2039. PubMed ID: 35512354 [TBL] [Abstract][Full Text] [Related]
6. The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability. Fiorilli V; Lanfranco L; Bonfante P Planta; 2013 May; 237(5):1267-77. PubMed ID: 23361889 [TBL] [Abstract][Full Text] [Related]
7. A module centered on the transcription factor Msn2 from arbuscular mycorrhizal fungus Rhizophagus irregularis regulates drought stress tolerance in the host plant. Fan X; Xie H; Huang X; Zhang S; Nie Y; Chen H; Xie X; Tang M New Phytol; 2023 Nov; 240(4):1497-1518. PubMed ID: 37370253 [TBL] [Abstract][Full Text] [Related]
8. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Harrison MJ; Dewbre GR; Liu J Plant Cell; 2002 Oct; 14(10):2413-29. PubMed ID: 12368495 [TBL] [Abstract][Full Text] [Related]
9. The auxin-inducible phosphate transporter AsPT5 mediates phosphate transport and is indispensable for arbuscule formation in Chinese milk vetch at moderately high phosphate supply. Fan X; Che X; Lai W; Wang S; Hu W; Chen H; Zhao B; Tang M; Xie X Environ Microbiol; 2020 Jun; 22(6):2053-2079. PubMed ID: 32079042 [TBL] [Abstract][Full Text] [Related]
10. Arbuscular mycorrhizal growth responses are fungal specific but do not differ between soybean genotypes with different phosphate efficiency. Wang X; Zhao S; Bücking H Ann Bot; 2016 Jul; 118(1):11-21. PubMed ID: 27208734 [TBL] [Abstract][Full Text] [Related]
11. Proteome adaptations under contrasting soil phosphate regimes of Rhizophagus irregularis engaged in a common mycorrhizal network. Recorbet G; Calabrese S; Balliau T; Zivy M; Wipf D; Boller T; Courty PE Fungal Genet Biol; 2021 Feb; 147():103517. PubMed ID: 33434644 [TBL] [Abstract][Full Text] [Related]
12. Medicago SPX1 and SPX3 regulate phosphate homeostasis, mycorrhizal colonization, and arbuscule degradation. Wang P; Snijders R; Kohlen W; Liu J; Bisseling T; Limpens E Plant Cell; 2021 Nov; 33(11):3470-3486. PubMed ID: 34469578 [TBL] [Abstract][Full Text] [Related]
13. Arbuscular Mycorrhizal Fungal 14-3-3 Proteins Are Involved in Arbuscule Formation and Responses to Abiotic Stresses During AM Symbiosis. Sun Z; Song J; Xin X; Xie X; Zhao B Front Microbiol; 2018; 9():91. PubMed ID: 29556216 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. Kobae Y; Hata S Plant Cell Physiol; 2010 Mar; 51(3):341-53. PubMed ID: 20097910 [TBL] [Abstract][Full Text] [Related]
15. The receptor kinase RiSho1 in Rhizophagus irregularis regulates arbuscule development and drought tolerance during arbuscular mycorrhizal symbiosis. Wang S; Han L; Ren Y; Hu W; Xie X; Chen H; Tang M New Phytol; 2024 Jun; 242(5):2207-2222. PubMed ID: 38481316 [TBL] [Abstract][Full Text] [Related]
16. Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. Javot H; Penmetsa RV; Breuillin F; Bhattarai KK; Noar RD; Gomez SK; Zhang Q; Cook DR; Harrison MJ Plant J; 2011 Dec; 68(6):954-65. PubMed ID: 21848683 [TBL] [Abstract][Full Text] [Related]
17. SlSPX1-SlPHR complexes mediate the suppression of arbuscular mycorrhizal symbiosis by phosphate repletion in tomato. Liao D; Sun C; Liang H; Wang Y; Bian X; Dong C; Niu X; Yang M; Xu G; Chen A; Wu S Plant Cell; 2022 Sep; 34(10):4045-4065. PubMed ID: 35863053 [TBL] [Abstract][Full Text] [Related]
18. RiPEIP1, a gene from the arbuscular mycorrhizal fungus Rhizophagus irregularis, is preferentially expressed in planta and may be involved in root colonization. Fiorilli V; Belmondo S; Khouja HR; Abbà S; Faccio A; Daghino S; Lanfranco L Mycorrhiza; 2016 Aug; 26(6):609-21. PubMed ID: 27075897 [TBL] [Abstract][Full Text] [Related]
19. Silencing of SlSPX1 and SlSPX2 promote growth and root mycorrhization in tomato (Solanum lycopersicum L.) seedlings. Singh NRR; Roychowdhury A; Srivastava R; Akash ; Gaganan GA; Parida AP; Kumar R Plant Sci; 2023 Aug; 333():111723. PubMed ID: 37142098 [TBL] [Abstract][Full Text] [Related]
20. Influence of nutrient signals and carbon allocation on the expression of phosphate and nitrogen transporter genes in winter wheat (Triticum aestivum L.) roots colonized by arbuscular mycorrhizal fungi. Tian H; Yuan X; Duan J; Li W; Zhai B; Gao Y PLoS One; 2017; 12(2):e0172154. PubMed ID: 28207830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]