BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

665 related articles for article (PubMed ID: 35037419)

  • 1. Advances in 3D printing of composite scaffolds for the repairment of bone tissue associated defects.
    Anandhapadman A; Venkateswaran A; Jayaraman H; Veerabadran Ghone N
    Biotechnol Prog; 2022 May; 38(3):e3234. PubMed ID: 35037419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering.
    Bittner SM; Smith BT; Diaz-Gomez L; Hudgins CD; Melchiorri AJ; Scott DW; Fisher JP; Mikos AG
    Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in Translational 3D Printing for Cartilage, Bone, and Osteochondral Tissue Engineering.
    Wang S; Zhao S; Yu J; Gu Z; Zhang Y
    Small; 2022 Sep; 18(36):e2201869. PubMed ID: 35713246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gradient scaffolds for osteochondral tissue engineering and regeneration.
    Zhang B; Huang J; Narayan RJ
    J Mater Chem B; 2020 Sep; 8(36):8149-8170. PubMed ID: 32776030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of 3D Printing Technology in Bone Tissue Engineering: A Review.
    Feng Y; Zhu S; Mei D; Li J; Zhang J; Yang S; Guan S
    Curr Drug Deliv; 2021; 18(7):847-861. PubMed ID: 33191886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printed scaffolds with calcified layer for osteochondral tissue engineering.
    Li Z; Jia S; Xiong Z; Long Q; Yan S; Hao F; Liu J; Yuan Z
    J Biosci Bioeng; 2018 Sep; 126(3):389-396. PubMed ID: 29685821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic Materials for Osteochondral Tissue Engineering.
    Iulian A; Dan L; Camelia T; Claudia M; Sebastian G
    Adv Exp Med Biol; 2018; 1058():31-52. PubMed ID: 29691816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of bone scaffolds with calcium phosphate and its derivatives by 3D printing: A review.
    Darghiasi SF; Farazin A; Ghazali HS
    J Mech Behav Biomed Mater; 2024 Mar; 151():106391. PubMed ID: 38211501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review.
    Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL
    J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization.
    Babilotte J; Guduric V; Le Nihouannen D; Naveau A; Fricain JC; Catros S
    J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2579-2595. PubMed ID: 30848068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and 3D Printing of Personalized Hybrid and Gradient Structures for Critical Size Bone Defects.
    Altunbek M; Afghah SF; Fallah A; Acar AA; Koc B
    ACS Appl Bio Mater; 2023 May; 6(5):1873-1885. PubMed ID: 37071829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds.
    Temple JP; Hutton DL; Hung BP; Huri PY; Cook CA; Kondragunta R; Jia X; Grayson WL
    J Biomed Mater Res A; 2014 Dec; 102(12):4317-25. PubMed ID: 24510413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-Printing Composite Polycaprolactone-Decellularized Bone Matrix Scaffolds for Bone Tissue Engineering Applications.
    Rindone AN; Nyberg E; Grayson WL
    Methods Mol Biol; 2018; 1577():209-226. PubMed ID: 28493213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.
    Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Fabrication of bioactive tissue engineering scaffold for reconstructing calcified cartilage layer based on three-dimension printing technique].
    Yu X; Fang J; Luo J; Yang X; He D; Gou Z; Dai X
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2016 Mar; 45(2):126-31. PubMed ID: 27273985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Personalized 3D printed bone scaffolds: A review.
    Mirkhalaf M; Men Y; Wang R; No Y; Zreiqat H
    Acta Biomater; 2023 Jan; 156():110-124. PubMed ID: 35429670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.