These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 35037432)
1. Analysis of fouling and breakthrough of process related impurities during depth filtration using confocal microscopy. Parau M; Johnson TF; Pullen J; Bracewell DG Biotechnol Prog; 2022 Mar; 38(2):e3233. PubMed ID: 35037432 [TBL] [Abstract][Full Text] [Related]
2. Depth filter material process interaction in the harvest of mammalian cells. Parau M; Pullen J; Bracewell DG Biotechnol Prog; 2023; 39(3):e3329. PubMed ID: 36775837 [TBL] [Abstract][Full Text] [Related]
3. Effectiveness of host cell protein removal using depth filtration with a filter containing diatomaceous earth. Nejatishahidein N; Borujeni EE; Roush DJ; Zydney AL Biotechnol Prog; 2020 Nov; 36(6):e3028. PubMed ID: 32447812 [TBL] [Abstract][Full Text] [Related]
4. Improved HCP Reduction Using a New, All-Synthetic Depth Filtration Media Within an Antibody Purification Process. Nguyen HC; Langland AL; Amara JP; Dullen M; Kahn DS; Costanzo JA Biotechnol J; 2019 Jan; 14(1):e1700771. PubMed ID: 29710434 [TBL] [Abstract][Full Text] [Related]
5. Comparison of host cell protein removal by depth filters with diatomaceous earth and synthetic silica filter aids using model proteins. Chu LK; Borujeni EE; Xu X; Ghose S; Zydney AL Biotechnol Bioeng; 2023 Jul; 120(7):1882-1890. PubMed ID: 36929487 [TBL] [Abstract][Full Text] [Related]
6. Single-stage chromatographic clarification of Chinese Hamster Ovary cell harvest reduces cost of protein production. O'Mara B; Singh NK; Menendez A; Tipton B; Vail A; Voloshin A; Buechler Y; Anderson SM Biotechnol Prog; 2023 Mar; 39(2):e3323. PubMed ID: 36598038 [TBL] [Abstract][Full Text] [Related]
7. Development of adsorptive hybrid filters to enable two-step purification of biologics. Singh N; Arunkumar A; Peck M; Voloshin AM; Moreno AM; Tan Z; Hester J; Borys MC; Li ZJ MAbs; 2017; 9(2):350-363. PubMed ID: 27929735 [TBL] [Abstract][Full Text] [Related]
8. Development of a novel and efficient cell culture flocculation process using a stimulus responsive polymer to streamline antibody purification processes. Kang YK; Hamzik J; Felo M; Qi B; Lee J; Ng S; Liebisch G; Shanehsaz B; Singh N; Persaud K; Ludwig DL; Balderes P Biotechnol Bioeng; 2013 Nov; 110(11):2928-37. PubMed ID: 23740533 [TBL] [Abstract][Full Text] [Related]
9. Combining descriptive and predictive modeling to systematically design depth filtration-based harvest processes for biologics. Liu P; Hartmann M; Shankaran A; Li H; Welsh J Biotechnol Bioeng; 2024 Sep; 121(9):2924-2935. PubMed ID: 38837221 [TBL] [Abstract][Full Text] [Related]
10. Control of antibody high and low molecular weight species by depth filtration-based cell culture harvesting. Yu D; Mayani M; Song Y; Xing Z; Ghose S; Li ZJ Biotechnol Bioeng; 2019 Oct; 116(10):2610-2620. PubMed ID: 31184373 [TBL] [Abstract][Full Text] [Related]
11. Scale-up issues for commercial depth filters in bioprocessing. Nejatishahidein N; Kim M; Jung SY; Borujeni EE; Fernandez-Cerezo L; Roush DJ; Borhan A; Zydney AL Biotechnol Bioeng; 2022 Apr; 119(4):1105-1114. PubMed ID: 35032027 [TBL] [Abstract][Full Text] [Related]
12. Robust depth filter sizing for centrate clarification. Lutz H; Chefer K; Felo M; Cacace B; Hove S; Wang B; Blanchard M; Oulundsen G; Piper R; Zhao X Biotechnol Prog; 2015; 31(6):1542-50. PubMed ID: 26518411 [TBL] [Abstract][Full Text] [Related]
13. Clarification of recombinant proteins from high cell density mammalian cell culture systems using new improved depth filters. Singh N; Pizzelli K; Romero JK; Chrostowski J; Evangelist G; Hamzik J; Soice N; Cheng KS Biotechnol Bioeng; 2013 Jul; 110(7):1964-72. PubMed ID: 23334838 [TBL] [Abstract][Full Text] [Related]
14. Design of a filter train for precipitate removal in monoclonal antibody downstream processing. Kandula S; Babu S; Jin M; Shukla AA Biotechnol Appl Biochem; 2009 Oct; 54(3):149-55. PubMed ID: 19656082 [TBL] [Abstract][Full Text] [Related]
15. DNA RETENTION ON DEPTH FILTERS. Khanal O; Xu X; Singh N; Traylor SJ; Huang C; Ghose S; Li ZJ; Lenhoff AM J Memb Sci; 2019 Jan; 570-571():464-471. PubMed ID: 31223185 [TBL] [Abstract][Full Text] [Related]
16. Proteomic analysis of host cell protein fouling during bioreactor harvesting. Zhang D; Wickramasinghe SR; Zydney AL; Smelko JP; Loman A; Wheeler A; Qian X Biotechnol Prog; 2024; 40(4):e3453. PubMed ID: 38477450 [TBL] [Abstract][Full Text] [Related]
17. PDADMAC flocculation of Chinese hamster ovary cells: enabling a centrifuge-less harvest process for monoclonal antibodies. McNerney T; Thomas A; Senczuk A; Petty K; Zhao X; Piper R; Carvalho J; Hammond M; Sawant S; Bussiere J MAbs; 2015; 7(2):413-28. PubMed ID: 25706650 [TBL] [Abstract][Full Text] [Related]
18. Modeling flux in tangential flow filtration using a reverse asymmetric membrane for Chinese hamster ovary cell clarification. Zhang D; Patel P; Strauss D; Qian X; Wickramasinghe SR Biotechnol Prog; 2021 May; 37(3):e3115. PubMed ID: 33350596 [TBL] [Abstract][Full Text] [Related]
19. Contributions of Chinese hamster ovary cell derived extracellular vesicles and other cellular materials to hollow fiber filter fouling during perfusion manufacturing of monoclonal antibodies. Zhang Y; Madabhushi S; Tang T; Raza H; Busch DJ; Zhao X; Ormes J; Xu S; Moroney J; Jiang R; Lin H; Liu R Biotechnol Bioeng; 2024 May; 121(5):1674-1687. PubMed ID: 38372655 [TBL] [Abstract][Full Text] [Related]
20. Identification and characterization of co-purifying CHO host cell proteins in monoclonal antibody purification process. Liu X; Chen Y; Zhao Y; Liu-Compton V; Chen W; Payne G; Lazar AC J Pharm Biomed Anal; 2019 Sep; 174():500-508. PubMed ID: 31234041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]