These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 35037853)

  • 21. Monitoring the temporal changes in herbicide-resistant Amaranthus tuberculatus: a landscape-scale probability-based estimation in Iowa.
    Hamberg RC; Yadav R; Dixon PM; Licht MA; Owen MD
    Pest Manag Sci; 2023 Dec; 79(12):4819-4827. PubMed ID: 37498675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Population Genomics of Herbicide Resistance: Adaptation via Evolutionary Rescue.
    Kreiner JM; Stinchcombe JR; Wright SI
    Annu Rev Plant Biol; 2018 Apr; 69():611-635. PubMed ID: 29140727
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic architecture underlying HPPD-inhibitor resistance in a Nebraska Amaranthus tuberculatus population.
    Murphy BP; Beffa R; Tranel PJ
    Pest Manag Sci; 2021 Nov; 77(11):4884-4891. PubMed ID: 34272808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The EccDNA Replicon: A Heritable, Extranuclear Vehicle That Enables Gene Amplification and Glyphosate Resistance in
    Molin WT; Yaguchi A; Blenner M; Saski CA
    Plant Cell; 2020 Jul; 32(7):2132-2140. PubMed ID: 32327538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Parallel and nonparallel genomic responses contribute to herbicide resistance in Ipomoea purpurea, a common agricultural weed.
    Van Etten M; Lee KM; Chang SM; Baucom RS
    PLoS Genet; 2020 Feb; 16(2):e1008593. PubMed ID: 32012153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Origins and structure of chloroplastic and mitochondrial plant protoporphyrinogen oxidases: implications for the evolution of herbicide resistance.
    Dayan FE; Barker A; Tranel PJ
    Pest Manag Sci; 2018 Oct; 74(10):2226-2234. PubMed ID: 28967179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of de novo transcriptome for waterhemp (Amaranthus tuberculatus) using GS-FLX 454 pyrosequencing and its application for studies of herbicide target-site genes.
    Riggins CW; Peng Y; Stewart CN; Tranel PJ
    Pest Manag Sci; 2010 Oct; 66(10):1042-52. PubMed ID: 20680963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional PPO2 mutations: co-occurrence in one plant or the same ppo2 allele of herbicide-resistant Amaranthus palmeri in the US mid-south.
    Noguera MM; Rangani G; Heiser J; Bararpour T; Steckel LE; Betz M; Porri A; Lerchl J; Zimmermann S; Nichols RL; Roma-Burgos N
    Pest Manag Sci; 2021 Feb; 77(2):1001-1012. PubMed ID: 32990410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coexpression Clusters and Allele-Specific Expression in Metabolism-Based Herbicide Resistance.
    Giacomini DA; Patterson EL; Küpper A; Beffa R; Gaines TA; Tranel PJ
    Genome Biol Evol; 2020 Dec; 12(12):2267-2278. PubMed ID: 32915951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective ancestral sorting and de novo evolution in the agricultural invasion of Amaranthus tuberculatus.
    Kreiner JM; Caballero A; Wright SI; Stinchcombe JR
    Evolution; 2022 Jan; 76(1):70-85. PubMed ID: 34806764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Confirmation of herbicide resistance mutations Trp574Leu, ΔG210, and EPSPS gene amplification and control of multiple herbicide-resistant Palmer amaranth (Amaranthus palmeri) with chlorimuron-ethyl, fomesafen, and glyphosate.
    Spaunhorst DJ; Nie H; Todd JR; Young JM; Young BG; Johnson WG
    PLoS One; 2019; 14(3):e0214458. PubMed ID: 30913269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physical Mapping of Amplified Copies of the 5-Enolpyruvylshikimate-3-Phosphate Synthase Gene in Glyphosate-Resistant Amaranthus tuberculatus.
    Dillon A; Varanasi VK; Danilova TV; Koo DH; Nakka S; Peterson DE; Tranel PJ; Friebe B; Gill BS; Jugulam M
    Plant Physiol; 2017 Feb; 173(2):1226-1234. PubMed ID: 27956489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Herbicide resistances in Amaranthus tuberculatus: a call for new options.
    Tranel PJ; Riggins CW; Bell MS; Hager AG
    J Agric Food Chem; 2011 Jun; 59(11):5808-12. PubMed ID: 21073196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Survey of the genomic landscape surrounding the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant Amaranthus palmeri from geographically distant populations in the USA.
    Molin WT; Wright AA; VanGessel MJ; McCloskey WB; Jugulam M; Hoagland RE
    Pest Manag Sci; 2018 May; 74(5):1109-1117. PubMed ID: 28686355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Triple Amino Acid Substitution TAP-IVS in the
    García MJ; Palma-Bautista C; Rojano-Delgado AM; Bracamonte E; Portugal J; Alcántara-de la Cruz R; De Prado R
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31096560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distribution of glyphosate-resistant Amaranthus spp. in Nebraska.
    Vieira BC; Samuelson SL; Alves GS; Gaines TA; Werle R; Kruger GR
    Pest Manag Sci; 2018 Oct; 74(10):2316-2324. PubMed ID: 29095567
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple mutations in the EPSPS and ALS genes of Amaranthus hybridus underlie resistance to glyphosate and ALS inhibitors.
    García MJ; Palma-Bautista C; Vazquez-Garcia JG; Rojano-Delgado AM; Osuna MD; Torra J; De Prado R
    Sci Rep; 2020 Oct; 10(1):17681. PubMed ID: 33077813
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deciphering the Mechanism of Glyphosate Resistance in Amaranthus palmeri by Cytogenomics.
    Koo DH; Sathishraj R; Friebe B; Gill BS
    Cytogenet Genome Res; 2021; 161(12):578-584. PubMed ID: 35021177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid weed adaptation and range expansion in response to agriculture over the past two centuries.
    Kreiner JM; Latorre SM; Burbano HA; Stinchcombe JR; Otto SP; Weigel D; Wright SI
    Science; 2022 Dec; 378(6624):1079-1085. PubMed ID: 36480621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A generalised individual-based algorithm for modelling the evolution of quantitative herbicide resistance in arable weed populations.
    Liu C; Bridges ME; Kaundun SS; Glasgow L; Owen MD; Neve P
    Pest Manag Sci; 2017 Feb; 73(2):462-474. PubMed ID: 27174645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.