These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 35037985)

  • 1. A deep learning radiomics model may help to improve the prediction performance of preoperative grading in meningioma.
    Yang L; Xu P; Zhang Y; Cui N; Wang M; Peng M; Gao C; Wang T
    Neuroradiology; 2022 Jul; 64(7):1373-1382. PubMed ID: 35037985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning radiomics model for preoperative grading in meningioma.
    Zhu Y; Man C; Gong L; Dong D; Yu X; Wang S; Fang M; Wang S; Fang X; Chen X; Tian J
    Eur J Radiol; 2019 Jul; 116():128-134. PubMed ID: 31153553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based automatic segmentation of meningioma from T1-weighted contrast-enhanced MRI for preoperative meningioma differentiation using radiomic features.
    Yang L; Wang T; Zhang J; Kang S; Xu S; Wang K
    BMC Med Imaging; 2024 Mar; 24(1):56. PubMed ID: 38443817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meningiomas: Preoperative predictive histopathological grading based on radiomics of MRI.
    Han Y; Wang T; Wu P; Zhang H; Chen H; Yang C
    Magn Reson Imaging; 2021 Apr; 77():36-43. PubMed ID: 33220449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study.
    Chen H; Li S; Zhang Y; Liu L; Lv X; Yi Y; Ruan G; Ke C; Feng Y
    Eur Radiol; 2022 Oct; 32(10):7248-7259. PubMed ID: 35420299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Value of MRI Radiomics Based on Enhanced T1WI Images in Prediction of Meningiomas Grade.
    Chu H; Lin X; He J; Pang P; Fan B; Lei P; Guo D; Ye C
    Acad Radiol; 2021 May; 28(5):687-693. PubMed ID: 32418785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging.
    Park YW; Oh J; You SC; Han K; Ahn SS; Choi YS; Chang JH; Kim SH; Lee SK
    Eur Radiol; 2019 Aug; 29(8):4068-4076. PubMed ID: 30443758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MRI- and DWI-Based Radiomics Features for Preoperatively Predicting Meningioma Sinus Invasion.
    Gui Y; Chen F; Ren J; Wang L; Chen K; Zhang J
    J Imaging Inform Med; 2024 Jun; 37(3):1054-1066. PubMed ID: 38351221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meningioma consistency assessment based on the fusion of deep learning features and radiomics features.
    Zhang J; Zhao Y; Lu Y; Li P; Dang S; Li X; Yin B; Zhao L
    Eur J Radiol; 2024 Jan; 170():111250. PubMed ID: 38071910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting meningioma grades and pathologic marker expression via deep learning.
    Chen J; Xue Y; Ren L; Lv K; Du P; Cheng H; Sun S; Hua L; Xie Q; Wu R; Gong Y
    Eur Radiol; 2024 May; 34(5):2997-3008. PubMed ID: 37853176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas.
    Zhao Z; Nie C; Zhao L; Xiao D; Zheng J; Zhang H; Yan P; Jiang X; Zhao H
    Eur Radiol; 2024 Apr; 34(4):2468-2479. PubMed ID: 37812296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRI.
    Hu J; Zhao Y; Li M; Liu J; Wang F; Weng Q; Wang X; Cao D
    Eur J Radiol; 2020 Oct; 131():109251. PubMed ID: 32916409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiparameter MRI-based radiomics nomogram for preoperative prediction of brain invasion in atypical meningioma:a multicentre study.
    Yu J; Kong X; Xie D; Zheng F; Wang C; Shi D; He C; Liang X; Xu H; Li S; Chen X
    BMC Med Imaging; 2024 Jun; 24(1):134. PubMed ID: 38840054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Deep Convolutional Neural Network With Performance Comparable to Radiologists for Differentiating Between Spinal Schwannoma and Meningioma.
    Maki S; Furuya T; Horikoshi T; Yokota H; Mori Y; Ota J; Kawasaki Y; Miyamoto T; Norimoto M; Okimatsu S; Shiga Y; Inage K; Orita S; Takahashi H; Suyari H; Uno T; Ohtori S
    Spine (Phila Pa 1976); 2020 May; 45(10):694-700. PubMed ID: 31809468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep learning radiomics analysis for identifying sinus invasion in patients with meningioma before operation using tumor and peritumoral regions.
    Sun K; Zhang J; Liu Z; Qiu Q; Gao H; Liu P; Chen K; Wei W; Wang L; Zhang J; Zhou J; Tian J
    Eur J Radiol; 2022 Apr; 149():110187. PubMed ID: 35183900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A radiomics model for preoperative prediction of brain invasion in meningioma non-invasively based on MRI: A multicentre study.
    Zhang J; Yao K; Liu P; Liu Z; Han T; Zhao Z; Cao Y; Zhang G; Zhang J; Tian J; Zhou J
    EBioMedicine; 2020 Aug; 58():102933. PubMed ID: 32739863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preoperative Prediction of Meningioma Subtype by Constructing a Clinical-Radiomics Model Nomogram Based on Magnetic Resonance Imaging.
    Han T; Liu X; Xu Z; Geng Y; Zhang B; Deng L; Jing M; Zhou J
    World Neurosurg; 2024 Jan; 181():e203-e213. PubMed ID: 37813337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intelligent noninvasive meningioma grading with a fully automatic segmentation using interpretable multiparametric deep learning.
    Jun Y; Park YW; Shin H; Shin Y; Lee JR; Han K; Ahn SS; Lim SM; Hwang D; Lee SK
    Eur Radiol; 2023 Sep; 33(9):6124-6133. PubMed ID: 37052658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiomic Features of the Edema Region May Contribute to Grading Meningiomas With Peritumoral Edema.
    Guo Z; Tian Z; Shi F; Xu P; Zhang J; Ling C; Zeng Q
    J Magn Reson Imaging; 2023 Jul; 58(1):301-310. PubMed ID: 36259547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of Radiomics-Based Feature Analysis on Multiparametric Magnetic Resonance Images for Noninvasive Meningioma Grading.
    Laukamp KR; Shakirin G; Baeßler B; Thiele F; Zopfs D; Große Hokamp N; Timmer M; Kabbasch C; Perkuhn M; Borggrefe J
    World Neurosurg; 2019 Dec; 132():e366-e390. PubMed ID: 31476455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.