These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 35037985)
41. Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma. Tang Y; Yang CM; Su S; Wang WJ; Fan LP; Shu J BMC Cancer; 2021 Nov; 21(1):1268. PubMed ID: 34819043 [TBL] [Abstract][Full Text] [Related]
42. Intestinal fibrosis classification in patients with Crohn's disease using CT enterography-based deep learning: comparisons with radiomics and radiologists. Meng J; Luo Z; Chen Z; Zhou J; Chen Z; Lu B; Zhang M; Wang Y; Yuan C; Shen X; Huang Q; Zhang Z; Ye Z; Cao Q; Zhou Z; Xu Y; Mao R; Chen M; Sun C; Li Z; Feng ST; Meng X; Huang B; Li X Eur Radiol; 2022 Dec; 32(12):8692-8705. PubMed ID: 35616733 [TBL] [Abstract][Full Text] [Related]
43. A Machine Learning Model Based on Unsupervised Clustering Multihabitat to Predict the Pathological Grading of Meningiomas. Wang X; Li J; Sun J; Liu W; Cai L; Zhao P; Yang Z; Lv H; Wang Z Biomed Res Int; 2022; 2022():8955227. PubMed ID: 36132071 [TBL] [Abstract][Full Text] [Related]
44. Differentiation Researches on the Meningioma Subtypes by Radiomics from Contrast-Enhanced Magnetic Resonance Imaging: A Preliminary Study. Niu L; Zhou X; Duan C; Zhao J; Sui Q; Liu X; Zhang X World Neurosurg; 2019 Jun; 126():e646-e652. PubMed ID: 30831287 [TBL] [Abstract][Full Text] [Related]
45. MRI-based radiomics signature for tumor grading of rectal carcinoma using random forest model. He B; Ji T; Zhang H; Zhu Y; Shu R; Zhao W; Wang K J Cell Physiol; 2019 Nov; 234(11):20501-20509. PubMed ID: 31074022 [TBL] [Abstract][Full Text] [Related]
46. Predicting muscle invasion in bladder cancer based on MRI: A comparison of radiomics, and single-task and multi-task deep learning. Li J; Qiu Z; Cao K; Deng L; Zhang W; Xie C; Yang S; Yue P; Zhong J; Lyu J; Huang X; Zhang K; Zou Y; Huang B Comput Methods Programs Biomed; 2023 May; 233():107466. PubMed ID: 36907040 [TBL] [Abstract][Full Text] [Related]
47. A radiomics nomogram may improve the prediction of IDH genotype for astrocytoma before surgery. Tan Y; Zhang ST; Wei JW; Dong D; Wang XC; Yang GQ; Tian J; Zhang H Eur Radiol; 2019 Jul; 29(7):3325-3337. PubMed ID: 30972543 [TBL] [Abstract][Full Text] [Related]
48. An interpretable radiomics model to select patients for radiotherapy after surgery for WHO grade 2 meningiomas. Park CJ; Choi SH; Eom J; Byun HK; Ahn SS; Chang JH; Kim SH; Lee SK; Park YW; Yoon HI Radiat Oncol; 2022 Aug; 17(1):147. PubMed ID: 35996160 [TBL] [Abstract][Full Text] [Related]
49. Preoperative prediction and histological stratification of intracranial solitary fibrous tumours by machine-learning models. Kong X; Luo Y; Li Y; Zhan D; Mao Y; Ma J Clin Radiol; 2023 Mar; 78(3):e204-e213. PubMed ID: 36496260 [TBL] [Abstract][Full Text] [Related]
50. Extensive peritumoral edema and brain-to-tumor interface MRI features enable prediction of brain invasion in meningioma: development and validation. Joo L; Park JE; Park SY; Nam SJ; Kim YH; Kim JH; Kim HS Neuro Oncol; 2021 Feb; 23(2):324-333. PubMed ID: 32789495 [TBL] [Abstract][Full Text] [Related]
51. Deep learning and radiomics-based approach to meningioma grading: exploring the potential value of peritumoral edema regions. Zhang Z; Miao Y; Wu J; Zhang X; Ma Q; Bai H; Gao Q Phys Med Biol; 2024 Apr; 69(10):. PubMed ID: 38593827 [No Abstract] [Full Text] [Related]
52. Machine learning analyses can differentiate meningioma grade by features on magnetic resonance imaging. Hale AT; Stonko DP; Wang L; Strother MK; Chambless LB Neurosurg Focus; 2018 Nov; 45(5):E4. PubMed ID: 30453458 [TBL] [Abstract][Full Text] [Related]
53. Nomogram based on MRI can preoperatively predict brain invasion in meningioma. Zhang J; Cao Y; Zhang G; Zhao Z; Sun J; Li W; Ren J; Han T; Zhou J; Chen K Neurosurg Rev; 2022 Dec; 45(6):3729-3737. PubMed ID: 36180806 [TBL] [Abstract][Full Text] [Related]
54. The development of a combined clinico-radiomics model for predicting post-operative recurrence in atypical meningiomas: a multicenter study. Ren L; Chen J; Deng J; Qing X; Cheng H; Wang D; Ji J; Chen H; Juratli TA; Wakimoto H; Gong Y; Hua L J Neurooncol; 2024 Jan; 166(1):59-71. PubMed ID: 38146046 [TBL] [Abstract][Full Text] [Related]
55. Radiomics model and deep learning model based on T1WI image for acute lymphoblastic leukemia identification. Cai Q; Tang H; Wei W; Zhang H; Jin K; Yi T Clin Radiol; 2024 Aug; 79(8):e1064-e1071. PubMed ID: 38796378 [TBL] [Abstract][Full Text] [Related]
56. A comparative study between deep learning and radiomics models in grading liver tumors using hepatobiliary phase contrast-enhanced MR images. Du L; Yuan J; Gan M; Li Z; Wang P; Hou Z; Wang C BMC Med Imaging; 2022 Dec; 22(1):218. PubMed ID: 36517762 [TBL] [Abstract][Full Text] [Related]
57. Preoperative Prediction of Meningioma Consistency Zhai Y; Song D; Yang F; Wang Y; Jia X; Wei S; Mao W; Xue Y; Wei X Front Oncol; 2021; 11():657288. PubMed ID: 34123812 [TBL] [Abstract][Full Text] [Related]
58. Radiomics analysis allows for precise prediction of silent corticotroph adenoma among non-functioning pituitary adenomas. Rui W; Qiao N; Wu Y; Zhang Y; Aili A; Zhang Z; Ye H; Wang Y; Zhao Y; Yao Z Eur Radiol; 2022 Mar; 32(3):1570-1578. PubMed ID: 34837512 [TBL] [Abstract][Full Text] [Related]
59. Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI. Laukamp KR; Thiele F; Shakirin G; Zopfs D; Faymonville A; Timmer M; Maintz D; Perkuhn M; Borggrefe J Eur Radiol; 2019 Jan; 29(1):124-132. PubMed ID: 29943184 [TBL] [Abstract][Full Text] [Related]
60. Deep learning and machine learning predictive models for neurological function after interventional embolization of intracranial aneurysms. Peng Y; Wang Y; Wen Z; Xiang H; Guo L; Su L; He Y; Pang H; Zhou P; Zhan X Front Neurol; 2024; 15():1321923. PubMed ID: 38327618 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]