These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 35038220)
21. The phase transfer effect of sulfur in lithium-sulfur batteries. Deng Z; Sun L; Sun Y; Luo C; Zhao Q; Yan K RSC Adv; 2019 Oct; 9(56):32826-32832. PubMed ID: 35529710 [TBL] [Abstract][Full Text] [Related]
22. Pomegranate-Structured Silica/Sulfur Composite Cathodes for High-Performance Lithium-Sulfur Batteries. Choi S; Su D; Shin M; Park S; Wang G Chem Asian J; 2018 Mar; 13(5):568-576. PubMed ID: 29333699 [TBL] [Abstract][Full Text] [Related]
23. Facile Formation of a Solid Electrolyte Interface as a Smart Blocking Layer for High-Stability Sulfur Cathode. Guo J; Du X; Zhang X; Zhang F; Liu J Adv Mater; 2017 Jul; 29(26):. PubMed ID: 28436543 [TBL] [Abstract][Full Text] [Related]
24. Quasi-Solid-State Electrolyte Induced by Metallic MoS Li Z; Yang ZJ; Moloney J; Yu CP; Chhowalla M ACS Nano; 2024 Jun; 18(24):16041-16050. PubMed ID: 38833631 [TBL] [Abstract][Full Text] [Related]
25. Enhanced Polysulfide Regulation Zhang L; Liu Y; Zhao Z; Jiang P; Zhang T; Li M; Pan S; Tang T; Wu T; Liu P; Hou Y; Lu H ACS Nano; 2020 Jul; 14(7):8495-8507. PubMed ID: 32568516 [TBL] [Abstract][Full Text] [Related]
26. Revamping Lithium-Sulfur Batteries for High Cell-Level Energy Density by Synergistic Utilization of Polysulfide Additives and Artificial Solid-Electrolyte Interphase Layers. Wu P; Dong M; Tan J; Kang DA; Yu C Adv Mater; 2021 Dec; 33(48):e2104246. PubMed ID: 34608672 [TBL] [Abstract][Full Text] [Related]
27. Realizing High-Performance Li-Polysulfide Full Cells by using a Lithium Bis(trifluoromethanesulfonyl)imide Salt Electrolyte for Stable Cyclability. Ahad SA; Pitchai R; Beyene AM; Joo SH; Kim DK; Lee HW ChemSusChem; 2018 Oct; 11(19):3402-3409. PubMed ID: 30052324 [TBL] [Abstract][Full Text] [Related]
28. Enhancing Adsorption and Reaction Kinetics of Polysulfides Using CoP-Coated N-Doped Mesoporous Carbon for High-Energy-Density Lithium-Sulfur Batteries. Cheng Q; Yin Z; Pan S; Zhang G; Pan Z; Yu X; Fang Y; Rao H; Zhong X ACS Appl Mater Interfaces; 2020 Sep; 12(39):43844-43853. PubMed ID: 32897698 [TBL] [Abstract][Full Text] [Related]
29. 3D Tungsten Disulfide/Carbon Nanotube Networks as Separator Coatings and Cathode Additives for Stable and Fast Lithium-Sulfur Batteries. Liu J; Li K; Zhang Q; Zhang X; Liang X; Yan J; Tan HH; Yu Y; Wu Y ACS Appl Mater Interfaces; 2021 Sep; 13(38):45547-45557. PubMed ID: 34528435 [TBL] [Abstract][Full Text] [Related]
30. Lithium Iron Phosphate Enhances the Performance of High-Areal-Capacity Sulfur Composite Cathodes. Gao X; Zheng C; Shao Y; Shah VR; Jin S; Suntivich J; Joo YL ACS Appl Mater Interfaces; 2023 Apr; 15(15):19011-19020. PubMed ID: 37036796 [TBL] [Abstract][Full Text] [Related]
31. Designing Lithium-Sulfur Batteries with High-Loading Cathodes at a Lean Electrolyte Condition. Chung SH; Manthiram A ACS Appl Mater Interfaces; 2018 Dec; 10(50):43749-43759. PubMed ID: 30479126 [TBL] [Abstract][Full Text] [Related]
32. Combined physical confinement and chemical adsorption on co-doped hollow TiO Zeng S; Peng J; Liang X; Wu X; Zheng H; Zhong H; Guo T; Luo S; Hong J; Li Y; Wu Q; Xu W Nanoscale; 2022 Jul; 14(26):9401-9408. PubMed ID: 35730556 [TBL] [Abstract][Full Text] [Related]
33. In Situ Generated Li Yan H; Wang H; Wang D; Li X; Gong Z; Yang Y Nano Lett; 2019 May; 19(5):3280-3287. PubMed ID: 31009570 [TBL] [Abstract][Full Text] [Related]
34. Biomimetic Root-like TiN/C@S Nanofiber as a Freestanding Cathode with High Sulfur Loading for Lithium-Sulfur Batteries. Liao Y; Xiang J; Yuan L; Hao Z; Gu J; Chen X; Yuan K; Kalambate PK; Huang Y ACS Appl Mater Interfaces; 2018 Nov; 10(44):37955-37962. PubMed ID: 30360064 [TBL] [Abstract][Full Text] [Related]
35. Single-Atom Iron and Doped Sulfur Improve the Catalysis of Polysulfide Conversion for Obtaining High-Performance Lithium-Sulfur Batteries. Zhao H; Tian B; Su C; Li Y ACS Appl Mater Interfaces; 2021 Feb; 13(6):7171-7177. PubMed ID: 33528984 [TBL] [Abstract][Full Text] [Related]
36. Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries. Chen S; Dai F; Gordin ML; Yu Z; Gao Y; Song J; Wang D Angew Chem Int Ed Engl; 2016 Mar; 55(13):4231-5. PubMed ID: 26918660 [TBL] [Abstract][Full Text] [Related]
37. Optimization of Pore Structure of Cathodic Carbon Supports for Solvate Ionic Liquid Electrolytes Based Lithium-Sulfur Batteries. Zhang S; Ikoma A; Li Z; Ueno K; Ma X; Dokko K; Watanabe M ACS Appl Mater Interfaces; 2016 Oct; 8(41):27803-27813. PubMed ID: 27668510 [TBL] [Abstract][Full Text] [Related]
38. Will Sulfide Electrolytes be Suitable Candidates for Constructing a Stable Solid/Liquid Electrolyte Interface? Fan B; Xu Y; Ma R; Luo Z; Wang F; Zhang X; Ma H; Fan P; Xue B; Han W ACS Appl Mater Interfaces; 2020 Nov; 12(47):52845-52856. PubMed ID: 33170619 [TBL] [Abstract][Full Text] [Related]
39. Fence-Type Molecular Electrocatalysts for High-Performance Lithium-Sulfur Batteries. Wang Z; Zhu H; Jiang J; Dong M; Meng F; Ke J; Ji H; Xu L; Li G; Fu Y; Liu Q; Xue Z; Ji Q; Zhu J; Lan S Angew Chem Int Ed Engl; 2024 Oct; 63(42):e202410823. PubMed ID: 39034916 [TBL] [Abstract][Full Text] [Related]
40. Rational Designed Mixed-Conductive Sulfur Cathodes for All-Solid-State Lithium Batteries. Yue J; Huang Y; Liu S; Chen J; Han F; Wang C ACS Appl Mater Interfaces; 2020 Aug; 12(32):36066-36071. PubMed ID: 32687320 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]