These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 35038502)

  • 1. Recent advances in application of iron-manganese oxide nanomaterials for removal of heavy metals in the aquatic environment.
    Li M; Kuang S; Kang Y; Ma H; Dong J; Guo Z
    Sci Total Environ; 2022 May; 819():153157. PubMed ID: 35038502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient removal of heavy metals from aqueous solutions using Mn-doped FeOOH: Performance and mechanisms.
    Li M; Kang Y; Ma H; Dong J; Wang Y; Kuang S
    Environ Res; 2023 Aug; 231(Pt 1):116161. PubMed ID: 37196694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review.
    Tang WW; Zeng GM; Gong JL; Liang J; Xu P; Zhang C; Huang BB
    Sci Total Environ; 2014 Jan; 468-469():1014-27. PubMed ID: 24095965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review on adsorption of heavy metals from wastewater using carbon nanotube and graphene-based nanomaterials.
    Chandran DG; Muruganandam L; Biswas R
    Environ Sci Pollut Res Int; 2023 Nov; 30(51):110010-110046. PubMed ID: 37804379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomaterials as versatile adsorbents for heavy metal ions in water: a review.
    Sarma GK; Sen Gupta S; Bhattacharyya KG
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6245-6278. PubMed ID: 30623336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorptive removal of heavy metals from aqueous solutions: Progress of adsorbents development and their effectiveness.
    Ismail UM; Vohra MS; Onaizi SA
    Environ Res; 2024 Jun; 251(Pt 1):118562. PubMed ID: 38447605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms.
    Ahmad SZN; Wan Salleh WN; Ismail AF; Yusof N; Mohd Yusop MZ; Aziz F
    Chemosphere; 2020 Jun; 248():126008. PubMed ID: 32006836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review.
    Liu X; Ma R; Wang X; Ma Y; Yang Y; Zhuang L; Zhang S; Jehan R; Chen J; Wang X
    Environ Pollut; 2019 Sep; 252(Pt A):62-73. PubMed ID: 31146239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrothermally synthesized titanate nanomaterials for the removal of heavy metals and radionuclides from water: A review.
    Li H; Huang Y; Liu J; Duan H
    Chemosphere; 2021 Nov; 282():131046. PubMed ID: 34102493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-based nanomaterials in the electroplating industry: A suitable choice for heavy metal removal from wastewater.
    De Beni E; Giurlani W; Fabbri L; Emanuele R; Santini S; Sarti C; Martellini T; Piciollo E; Cincinelli A; Innocenti M
    Chemosphere; 2022 Apr; 292():133448. PubMed ID: 34973258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomaterials as a sustainable choice for treating wastewater.
    Ahmed SF; Mofijur M; Ahmed B; Mehnaz T; Mehejabin F; Maliat D; Hoang AT; Shafiullah GM
    Environ Res; 2022 Nov; 214(Pt 1):113807. PubMed ID: 35798266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanotechnology- A ray of hope for heavy metals removal.
    Mohanapriya V; Sakthivel R; Pham NDK; Cheng CK; Le HS; Dong TMH
    Chemosphere; 2023 Jan; 311(Pt 1):136989. PubMed ID: 36309058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic removal by manganese-doped mesoporous iron oxides from groundwater: Performance and mechanism.
    Xie X; Lu C; Xu R; Yang X; Yan L; Su C
    Sci Total Environ; 2022 Feb; 806(Pt 2):150615. PubMed ID: 34592280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significance of conducting polyaniline based composites for the removal of dyes and heavy metals from aqueous solution and wastewaters - A review.
    Senguttuvan S; Senthilkumar P; Janaki V; Kamala-Kannan S
    Chemosphere; 2021 Mar; 267():129201. PubMed ID: 33338713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient and selectivity removal of heavy metal ions using single-layer Na
    Peng R; Li H; Chen Y; Ren F; Tian F; Gu Y; Zhang H; Huang X
    Chemosphere; 2021 Jul; 275():130068. PubMed ID: 33677278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent progress in removal of heavy metals from wastewater: A comprehensive review.
    Fei Y; Hu YH
    Chemosphere; 2023 Sep; 335():139077. PubMed ID: 37263507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequestration and oxidation of heavy metals mediated by Mn(II) oxidizing microorganisms in the aquatic environment.
    Huang Y; Huangfu X; Ma C; Liu Z
    Chemosphere; 2023 Jul; 329():138594. PubMed ID: 37030347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal removal from water/wastewater by nanosized metal oxides: a review.
    Hua M; Zhang S; Pan B; Zhang W; Lv L; Zhang Q
    J Hazard Mater; 2012 Apr; 211-212():317-31. PubMed ID: 22018872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of calcium oxalate-bromopyrogallol red inclusion sorbent and application to treatment of cationic dye and heavy metal wastewaters.
    Wang HY; Gao HW
    Environ Sci Pollut Res Int; 2009 May; 16(3):339-47. PubMed ID: 18998184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron-based materials for simultaneous removal of heavy metal(loid)s and emerging organic contaminants from the aquatic environment: Recent advances and perspectives.
    Gong Y; Wang Y; Lin N; Wang R; Wang M; Zhang X
    Environ Pollut; 2022 Apr; 299():118871. PubMed ID: 35066106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.