These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 35038538)
41. Profiling Volatile Terpenoids from Calabrian Pine Stands Infested by the Pine Processionary Moth. Foti V; Araniti F; Manti F; Alicandri E; Giuffrè AM; Bonsignore CP; Castiglione E; Sorgonà A; Covino S; Paolacci AR; Ciaffi M; Badiani M Plants (Basel); 2020 Oct; 9(10):. PubMed ID: 33066541 [TBL] [Abstract][Full Text] [Related]
42. Size and dispersion of urticating setae in three species of processionary moths. Petrucco Toffolo E; Zovi D; Perin C; Paolucci P; Roques A; Battisti A; Horvath H Integr Zool; 2014 Jun; 9(3):320-7. PubMed ID: 24952969 [TBL] [Abstract][Full Text] [Related]
43. Long-term effects of forest management on post-drought growth resilience: An analytical framework. Manrique-Alba À; Beguería S; Camarero JJ Sci Total Environ; 2022 Mar; 810():152374. PubMed ID: 34914996 [TBL] [Abstract][Full Text] [Related]
44. Missing Rings in Pinus halepensis - The Missing Link to Relate the Tree-Ring Record to Extreme Climatic Events. Novak K; de Luis M; Saz MA; Longares LA; Serrano-Notivoli R; Raventós J; Čufar K; Gričar J; Di Filippo A; Piovesan G; Rathgeber CB; Papadopoulos A; Smith KT Front Plant Sci; 2016; 7():727. PubMed ID: 27303421 [TBL] [Abstract][Full Text] [Related]
45. Forest structure and climate mediate drought-induced tree mortality in forests of the Sierra Nevada, USA. Restaino C; Young DJN; Estes B; Gross S; Wuenschel A; Meyer M; Safford H Ecol Appl; 2019 Jun; 29(4):e01902. PubMed ID: 31020735 [TBL] [Abstract][Full Text] [Related]
46. In search of pathogens: transcriptome-based identification of viral sequences from the pine processionary moth (Thaumetopoea pityocampa). Jakubowska AK; Nalcacioglu R; Millán-Leiva A; Sanz-Carbonell A; Muratoglu H; Herrero S; Demirbag Z Viruses; 2015 Jan; 7(2):456-79. PubMed ID: 25626148 [TBL] [Abstract][Full Text] [Related]
47. Occupational Exposure of Forest Workers to the Urticating Setae of the Pine Processionary Moth Olivieri M; Ludovico E; Battisti A Int J Environ Res Public Health; 2023 Mar; 20(6):. PubMed ID: 36981645 [TBL] [Abstract][Full Text] [Related]
48. Winter drought impairs xylem phenology, anatomy and growth in Mediterranean Scots pine forests. Camarero JJ; Guada G; Sánchez-Salguero R; Cervantes E Tree Physiol; 2016 Dec; 36(12):1536-1549. PubMed ID: 27614359 [TBL] [Abstract][Full Text] [Related]
49. Greater sensitivity to hotter droughts underlies juniper dieback and mortality in Mediterranean shrublands. Sánchez-Salguero R; Camarero JJ Sci Total Environ; 2020 Jun; 721():137599. PubMed ID: 32172101 [TBL] [Abstract][Full Text] [Related]
50. Legacies of more frequent drought in ponderosa pine across the western United States. Peltier DMP; Ogle K Glob Chang Biol; 2019 Nov; 25(11):3803-3816. PubMed ID: 31155807 [TBL] [Abstract][Full Text] [Related]
51. Warming increased bark beetle-induced tree mortality by 30% during an extreme drought in California. Robbins ZJ; Xu C; Aukema BH; Buotte PC; Chitra-Tarak R; Fettig CJ; Goulden ML; Goodsman DW; Hall AD; Koven CD; Kueppers LM; Madakumbura GD; Mortenson LA; Powell JA; Scheller RM Glob Chang Biol; 2022 Jan; 28(2):509-523. PubMed ID: 34713535 [TBL] [Abstract][Full Text] [Related]
52. Regeneration of three pine species in a Mediterranean forest: A study to test predictions from species distribution models under changing climates. Tíscar PA; Candel-Pérez D; Estrany J; Balandier P; Gómez R; Lucas-Borja ME Sci Total Environ; 2017 Apr; 584-585():78-87. PubMed ID: 28135616 [TBL] [Abstract][Full Text] [Related]
53. Summer rainfall variability in European Mediterranean mountains from the sixteenth to the twentieth century reconstructed from tree rings. Ruiz-Labourdette D; Génova M; Schmitz MF; Urrutia R; Pineda FD Int J Biometeorol; 2014 Sep; 58(7):1627-39. PubMed ID: 24317795 [TBL] [Abstract][Full Text] [Related]
54. Buffered climate change effects in a Mediterranean pine species: range limit implications from a tree-ring study. Linares JC; Tíscar PA Oecologia; 2011 Nov; 167(3):847-59. PubMed ID: 21562865 [TBL] [Abstract][Full Text] [Related]
55. Changes in tree resistance, recovery and resilience across three successive extreme droughts in the northeast Iberian Peninsula. Serra-Maluquer X; Mencuccini M; Martínez-Vilalta J Oecologia; 2018 May; 187(1):343-354. PubMed ID: 29589144 [TBL] [Abstract][Full Text] [Related]
56. Interactions between pupae of the pine processionary moth (Thaumetopoea pityocampa) and parasitoids in a Pinus forest. Bonsignore CP; Manti F; Castiglione E Bull Entomol Res; 2015 Oct; 105(5):621-8. PubMed ID: 26104534 [TBL] [Abstract][Full Text] [Related]
57. Inducibility of chemical defences by two chewing insect herbivores in pine trees is specific to targeted plant tissue, particular herbivore and defensive trait. Moreira X; Lundborg L; Zas R; Carrillo-Gavilán A; Borg-Karlson AK; Sampedro L Phytochemistry; 2013 Oct; 94():113-22. PubMed ID: 23768645 [TBL] [Abstract][Full Text] [Related]
58. Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp. salzmannii. Linares JC; Tíscar PA Tree Physiol; 2010 Jul; 30(7):795-806. PubMed ID: 20522420 [TBL] [Abstract][Full Text] [Related]
59. Forest defoliator outbreaks under climate change: effects on the frequency and severity of outbreaks of five pine insect pests. Haynes KJ; Allstadt AJ; Klimetzek D Glob Chang Biol; 2014 Jun; 20(6):2004-18. PubMed ID: 24464875 [TBL] [Abstract][Full Text] [Related]
60. Control of pine processionary moth, Thaumetopoea pityocampa with Bacillus thuringiensis in Antalya, Turkey. Cebeci HH; Oymen RT; Acer S J Environ Biol; 2010 May; 31(3):357-61. PubMed ID: 21047011 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]