These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35038690)

  • 1. Multi-channel convolutional analysis operator learning for dual-energy CT reconstruction.
    Perelli A; Alfonso Garcia S; Bousse A; Tasu JP; Efthimiadis N; Visvikis D
    Phys Med Biol; 2022 Mar; 67(6):. PubMed ID: 35038690
    [No Abstract]   [Full Text] [Related]  

  • 2. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization.
    Dong X; Niu T; Zhu L
    Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep convolutional dictionary learning network for sparse view CT reconstruction with a group sparse prior.
    Kang Y; Liu J; Wu F; Wang K; Qiang J; Hu D; Zhang Y
    Comput Methods Programs Biomed; 2024 Feb; 244():108010. PubMed ID: 38199137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LRR-CED: low-resolution reconstruction-aware convolutional encoder-decoder network for direct sparse-view CT image reconstruction.
    Kandarpa VSS; Perelli A; Bousse A; Visvikis D
    Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35738249
    [No Abstract]   [Full Text] [Related]  

  • 5. Reduced iteration image reconstruction of incomplete projection CT using regularization strategy through Lp norm dictionary learning.
    Gou J; Wu X; Dong H
    J Xray Sci Technol; 2019; 27(3):559-572. PubMed ID: 31177257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact dual energy material decomposition from inconsistent rays (MDIR).
    Maass C; Meyer E; Kachelriess M
    Med Phys; 2011 Feb; 38(2):691-700. PubMed ID: 21452706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image domain dual material decomposition for dual-energy CT using butterfly network.
    Zhang W; Zhang H; Wang L; Wang X; Hu X; Cai A; Li L; Niu T; Yan B
    Med Phys; 2019 May; 46(5):2037-2051. PubMed ID: 30883808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iterative image-domain decomposition for dual-energy CT.
    Niu T; Dong X; Petrongolo M; Zhu L
    Med Phys; 2014 Apr; 41(4):041901. PubMed ID: 24694132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prototyping optimization-based image reconstructions from limited-angular-range data in dual-energy CT.
    Chen B; Zhang Z; Xia D; Sidky EY; Pan X
    Med Image Anal; 2024 Jan; 91():103025. PubMed ID: 37976869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low dose CT reconstruction via L1 norm dictionary learning using alternating minimization algorithm and balancing principle.
    Wu J; Dai F; Hu G; Mou X
    J Xray Sci Technol; 2018; 26(4):603-622. PubMed ID: 29689766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noise suppression for dual-energy CT via penalized weighted least-square optimization with similarity-based regularization.
    Harms J; Wang T; Petrongolo M; Niu T; Zhu L
    Med Phys; 2016 May; 43(5):2676. PubMed ID: 27147376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining convolutional sparse coding with total variation for sparse-view CT reconstruction.
    Li X; Li Y; Chen P; Li F
    Appl Opt; 2022 Feb; 61(6):C116-C124. PubMed ID: 35201005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dense and U-shaped transformer with dual-domain multi-loss function for sparse-view CT reconstruction.
    Liu P; Fang C; Qiao Z
    J Xray Sci Technol; 2024; 32(2):207-228. PubMed ID: 38306086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MB-DECTNet: a model-based unrolling network for accurate 3D dual-energy CT reconstruction from clinically acquired helical scans.
    Ge T; Liao R; Medrano M; Politte DG; Williamson JF; O'Sullivan JA
    Phys Med Biol; 2023 Dec; 68(24):. PubMed ID: 37802071
    [No Abstract]   [Full Text] [Related]  

  • 16. Dual energy CT with one full scan and a second sparse-view scan using structure preserving iterative reconstruction (SPIR).
    Wang T; Zhu L
    Phys Med Biol; 2016 Sep; 61(18):6684-6706. PubMed ID: 27552793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved iterative neural network for high-quality image-domain material decomposition in dual-energy CT.
    Li Z; Long Y; Chun IY
    Med Phys; 2023 Apr; 50(4):2195-2211. PubMed ID: 35735056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prior-image-based CT reconstruction using attenuation-mismatched priors.
    Zhang H; Capaldi D; Zeng D; Ma J; Xing L
    Phys Med Biol; 2021 Mar; 66(6):064007. PubMed ID: 33729997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate Iterative FBP Reconstruction Method for Material Decomposition of Dual Energy CT.
    Mengfei Li ; Yunsong Zhao ; Peng Zhang
    IEEE Trans Med Imaging; 2019 Mar; 38(3):802-812. PubMed ID: 30281441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An iterative reconstruction method based on monochromatic images for dual energy CT.
    Zhang W; Zhao S; Pan H; Zhao Y; Zhao X
    Med Phys; 2021 Oct; 48(10):6437-6452. PubMed ID: 34468032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.