These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 35038775)
41. A Self-Assembled 2D Thermofunctional Material for Radiative Cooling. Jaramillo-Fernandez J; Whitworth GL; Pariente JA; Blanco A; Garcia PD; Lopez C; Sotomayor-Torres CM Small; 2019 Dec; 15(52):e1905290. PubMed ID: 31650687 [TBL] [Abstract][Full Text] [Related]
42. Janus Interface Engineering Boosting Visibly Transparent Radiative Cooling for Energy Saving. Li Y; Chen X; Yu L; Pang D; Yan H; Chen M ACS Appl Mater Interfaces; 2023 Jan; 15(3):4122-4131. PubMed ID: 36642885 [TBL] [Abstract][Full Text] [Related]
43. Recent Progress in Daytime Radiative Cooling: Advanced Material Designs and Applications. Zhang Q; Wang S; Wang X; Jiang Y; Li J; Xu W; Zhu B; Zhu J Small Methods; 2022 Apr; 6(4):e2101379. PubMed ID: 35212488 [TBL] [Abstract][Full Text] [Related]
44. Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence. Wang X; Zhang Q; Wang S; Jin C; Zhu B; Su Y; Dong X; Liang J; Lu Z; Zhou L; Li W; Zhu S; Zhu J Sci Bull (Beijing); 2022 Sep; 67(18):1874-1881. PubMed ID: 36546301 [TBL] [Abstract][Full Text] [Related]
45. Dynamically Tunable All-Weather Daytime Cellulose Aerogel Radiative Supercooler for Energy-Saving Building. Cai C; Wei Z; Ding C; Sun B; Chen W; Gerhard C; Nimerovsky E; Fu Y; Zhang K Nano Lett; 2022 May; 22(10):4106-4114. PubMed ID: 35510868 [TBL] [Abstract][Full Text] [Related]
46. A Scalable Microstructure Photonic Coating Fabricated by Roll-to-Roll "Defects" for Daytime Subambient Passive Radiative Cooling. Liu S; Sui C; Harbinson M; Pudlo M; Perera H; Zhang Z; Liu R; Ku Z; Islam MD; Liu Y; Wu R; Zhu Y; Genzer J; Khan SA; Hsu PC; Ryu JE Nano Lett; 2023 Sep; 23(17):7767-7774. PubMed ID: 37487140 [TBL] [Abstract][Full Text] [Related]
47. Bilateral passive thermal management for dynamical temperature regulation. Li B; Zeng S Sci Rep; 2024 Feb; 14(1):2875. PubMed ID: 38311622 [TBL] [Abstract][Full Text] [Related]
48. Passive directional sub-ambient daytime radiative cooling. Bhatia B; Leroy A; Shen Y; Zhao L; Gianello M; Li D; Gu T; Hu J; Soljačić M; Wang EN Nat Commun; 2018 Nov; 9(1):5001. PubMed ID: 30479326 [TBL] [Abstract][Full Text] [Related]
49. Mechanically Switchable Multifunctional Device for Regulating Passive Radiative Cooling and Solar Heating. Tao S; Han J; Xu Y; Fang Z; Ni Y; Fang L; Lu C; Xu Z ACS Appl Mater Interfaces; 2023 Apr; 15(13):17123-17133. PubMed ID: 36971527 [TBL] [Abstract][Full Text] [Related]
50. BaSO Altamimi MMS; Saeed U; Al-Turaif H Polymers (Basel); 2023 Sep; 15(19):. PubMed ID: 37835925 [TBL] [Abstract][Full Text] [Related]
51. A solution-processed radiative cooling glass. Zhao X; Li T; Xie H; Liu H; Wang L; Qu Y; Li SC; Liu S; Brozena AH; Yu Z; Srebric J; Hu L Science; 2023 Nov; 382(6671):684-691. PubMed ID: 37943922 [TBL] [Abstract][Full Text] [Related]
52. "Warm in Winter and Cool in Summer": Scalable Biochameleon Inspired Temperature-Adaptive Coating with Easy Preparation and Construction. Dong Y; Meng W; Wang F; Han H; Liang H; Li X; Zou Y; Yang C; Xu Z; Yan Y; Cheng Z Nano Lett; 2023 Oct; 23(19):9034-9041. PubMed ID: 37728246 [TBL] [Abstract][Full Text] [Related]
53. Daytime Sub-Ambient Radiative Cooling with Vivid Structural Colors Mediated by Coupled Nanocavities. Jin S; Xiao M; Zhang W; Wang B; Zhao C ACS Appl Mater Interfaces; 2022 Dec; 14(49):54676-54687. PubMed ID: 36454716 [TBL] [Abstract][Full Text] [Related]
54. Development of High-Performance Flexible Radiative Cooling Film Using PDMS/TiO Jung J; Yoon S; Kim B; Kim JB Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138392 [TBL] [Abstract][Full Text] [Related]
55. High-Efficiency Thermal-Shock Resistance Enabled by Radiative Cooling and Latent Heat Storage. Qin M; Jia K; Usman A; Han S; Xiong F; Han H; Jin Y; Aftab W; Geng X; Ma B; Ashraf Z; Gao S; Wang Y; Shen Z; Zou R Adv Mater; 2024 Jun; 36(25):e2314130. PubMed ID: 38428436 [TBL] [Abstract][Full Text] [Related]
56. Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range. Ding Z; Pattelli L; Xu H; Sun W; Li X; Pan L; Zhao J; Wang C; Zhang X; Song Y; Qiu J; Li Y; Yang R Small; 2022 Jun; 18(25):e2202400. PubMed ID: 35587771 [TBL] [Abstract][Full Text] [Related]
57. Cross-Linked Porous Polymeric Coating without a Metal-Reflective Layer for Sub-Ambient Radiative Cooling. Son S; Liu Y; Chae D; Lee H ACS Appl Mater Interfaces; 2020 Dec; 12(52):57832-57839. PubMed ID: 33345542 [TBL] [Abstract][Full Text] [Related]
58. Durable radiative cooling against environmental aging. Song J; Zhang W; Sun Z; Pan M; Tian F; Li X; Ye M; Deng X Nat Commun; 2022 Aug; 13(1):4805. PubMed ID: 35973997 [TBL] [Abstract][Full Text] [Related]
59. Ultrahigh Passive Cooling Power in Hydrogel with Rationally Designed Optofluidic Properties. Fei J; Han D; Zhang X; Li K; Lavielle N; Zhou K; Wang X; Tan JY; Zhong J; Wan MP; Nefzaoui E; Bourouina T; Li S; Ng BF; Cai L; Li H Nano Lett; 2024 Jan; 24(2):623-631. PubMed ID: 38048272 [TBL] [Abstract][Full Text] [Related]
60. Simultaneous Passive Cooling and Humidity Control via the Fiber-Encapsulated Gel Structure. Xu Q; Gu B; Pan H; Fan F; Tang H; Xu J; Zhao D ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37910847 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]