BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 35038900)

  • 1. Synthetic Control of Metabolic States in Pseudomonas putida by Tuning Polyhydroxyalkanoate Cycle.
    Manoli MT; Nogales J; Prieto A
    mBio; 2022 Feb; 13(1):e0179421. PubMed ID: 35038900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance.
    de Eugenio LI; Escapa IF; Morales V; Dinjaski N; Galán B; García JL; Prieto MA
    Environ Microbiol; 2010 Jan; 12(1):207-21. PubMed ID: 19788655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tight coupling of polymerization and depolymerization of polyhydroxyalkanoates ensures efficient management of carbon resources in Pseudomonas putida.
    Arias S; Bassas-Galia M; Molinari G; Timmis KN
    Microb Biotechnol; 2013 Sep; 6(5):551-63. PubMed ID: 23445364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida.
    Escapa IF; García JL; Bühler B; Blank LM; Prieto MA
    Environ Microbiol; 2012 Apr; 14(4):1049-63. PubMed ID: 22225632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida.
    Prieto A; Escapa IF; Martínez V; Dinjaski N; Herencias C; de la Peña F; Tarazona N; Revelles O
    Environ Microbiol; 2016 Feb; 18(2):341-57. PubMed ID: 25556983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida.
    Borrero-de Acuña JM; Bielecka A; Häussler S; Schobert M; Jahn M; Wittmann C; Jahn D; Poblete-Castro I
    Microb Cell Fact; 2014 Jun; 13():88. PubMed ID: 24948031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced production of polyhydroxyalkanoates in Pseudomonas putida KT2440 by a combination of genome streamlining and promoter engineering.
    Liu H; Chen Y; Zhang Y; Zhao W; Guo H; Wang S; Xia W; Wang S; Liu R; Yang C
    Int J Biol Macromol; 2022 Jun; 209(Pt A):117-124. PubMed ID: 35395277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of GlpR repressor in Pseudomonas putida KT2440 growth and PHA production from glycerol.
    Escapa IF; del Cerro C; García JL; Prieto MA
    Environ Microbiol; 2013 Jan; 15(1):93-110. PubMed ID: 22646161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of genome-streamlined strain Pseudomonas putida KTU-U27 for medium-chain-length polyhydroxyalkanoate production from xylose and cellobiose.
    Liu H; Chen Y; Wang S; Liu Y; Zhao W; Huo K; Guo H; Xiong W; Wang S; Yang C; Liu R
    Int J Biol Macromol; 2023 Dec; 253(Pt 2):126732. PubMed ID: 37678685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic Response of
    Możejko-Ciesielska J; Serafim LS
    Biomolecules; 2019 Nov; 9(12):. PubMed ID: 31795154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of growth stage on activities of polyhydroxyalkanoate (PHA) polymerase and PHA depolymerase in Pseudomonas putida U.
    Ren Q; de Roo G; Witholt B; Zinn M; Thöny-Meyer L
    BMC Microbiol; 2010 Oct; 10():254. PubMed ID: 20937103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9 Editing of the Synthesis of Biodegradable Polyesters Polyhydroxyalkanaotes (PHA) in Pseudomonas putida KT2440.
    Liu S; Narancic T; Davis C; O'Connor KE
    Methods Mol Biol; 2022; 2397():341-358. PubMed ID: 34813072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 2D-DIGE-based proteomic analysis brings new insights into cellular responses of Pseudomonas putida KT2440 during polyhydroxyalkanoates synthesis.
    Możejko-Ciesielska J; Mostek A
    Microb Cell Fact; 2019 May; 18(1):93. PubMed ID: 31138236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of mcl-Poly(3-hydroxyalkanoates) synthesis by different Pseudomonas putida strains from crude glycerol: citrate accumulates at high titer under PHA-producing conditions.
    Poblete-Castro I; Binger D; Oehlert R; Rohde M
    BMC Biotechnol; 2014 Dec; 14():962. PubMed ID: 25532606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The PhaD regulator controls the simultaneous expression of the pha genes involved in polyhydroxyalkanoate metabolism and turnover in Pseudomonas putida KT2442.
    de Eugenio LI; Galán B; Escapa IF; Maestro B; Sanz JM; García JL; Prieto MA
    Environ Microbiol; 2010 Jun; 12(6):1591-603. PubMed ID: 20406286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative 'Omics Analyses of Medium Chain Length Polyhydroxyalkanaote Metabolism in Pseudomonas putida LS46 Cultured with Waste Glycerol and Waste Fatty Acids.
    Fu J; Sharma P; Spicer V; Krokhin OV; Zhang X; Fristensky B; Cicek N; Sparling R; Levin DB
    PLoS One; 2015; 10(11):e0142322. PubMed ID: 26544181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β-oxidation-polyhydroxyalkanoates synthesis relationship in Pseudomonas putida KT2440 revisited.
    Liu S; Narancic T; Tham JL; O'Connor KE
    Appl Microbiol Biotechnol; 2023 Mar; 107(5-6):1863-1874. PubMed ID: 36763117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: highlights from a multi-level omics approach.
    Poblete-Castro I; Escapa IF; Jäger C; Puchalka J; Lam CM; Schomburg D; Prieto MA; Martins dos Santos VA
    Microb Cell Fact; 2012 Mar; 11():34. PubMed ID: 22433058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring differences in gene expression levels and polyhydroxyalkanoate (PHA) production in Pseudomonas putida KT2440 grown on different carbon sources.
    Wang Q; Nomura CT
    J Biosci Bioeng; 2010 Dec; 110(6):653-9. PubMed ID: 20807680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.