BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 35039017)

  • 21. A Vacuolar Phytosiderophore Transporter Alters Iron and Zinc Accumulation in Polished Rice Grains.
    Che J; Yokosho K; Yamaji N; Ma JF
    Plant Physiol; 2019 Sep; 181(1):276-288. PubMed ID: 31331995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Yellow stripe1. Expanded roles for the maize iron-phytosiderophore transporter.
    Roberts LA; Pierson AJ; Panaviene Z; Walker EL
    Plant Physiol; 2004 May; 135(1):112-20. PubMed ID: 15107503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular evidence for phytosiderophore-induced improvement of iron nutrition of peanut intercropped with maize in calcareous soil.
    Xiong H; Kakei Y; Kobayashi T; Guo X; Nakazono M; Takahashi H; Nakanishi H; Shen H; Zhang F; Nishizawa NK; Zuo Y
    Plant Cell Environ; 2013 Oct; 36(10):1888-902. PubMed ID: 23496756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings.
    Inoue H; Kobayashi T; Nozoye T; Takahashi M; Kakei Y; Suzuki K; Nakazono M; Nakanishi H; Mori S; Nishizawa NK
    J Biol Chem; 2009 Feb; 284(6):3470-9. PubMed ID: 19049971
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brachypodium distachyon as a new model system for understanding iron homeostasis in grasses: phylogenetic and expression analysis of Yellow Stripe-Like (YSL) transporters.
    Yordem BK; Conte SS; Ma JF; Yokosho K; Vasques KA; Gopalsamy SN; Walker EL
    Ann Bot; 2011 Oct; 108(5):821-33. PubMed ID: 21831857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Further characterization of ferric-phytosiderophore transporters ZmYS1 and HvYS1 in maize and barley.
    Ueno D; Yamaji N; Ma JF
    J Exp Bot; 2009; 60(12):3513-20. PubMed ID: 19549626
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status.
    Mizuno D; Higuchi K; Sakamoto T; Nakanishi H; Mori S; Nishizawa NK
    Plant Physiol; 2003 Aug; 132(4):1989-97. PubMed ID: 12913155
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The expression of iron homeostasis-related genes during rice germination.
    Nozoye T; Inoue H; Takahashi M; Ishimaru Y; Nakanishi H; Mori S; Nishizawa NK
    Plant Mol Biol; 2007 May; 64(1-2):35-47. PubMed ID: 17333504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutation in nicotianamine aminotransferase stimulated the Fe(II) acquisition system and led to iron accumulation in rice.
    Cheng L; Wang F; Shou H; Huang F; Zheng L; He F; Li J; Zhao FJ; Ueno D; Ma JF; Wu P
    Plant Physiol; 2007 Dec; 145(4):1647-57. PubMed ID: 17951455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Adaptive Mechanism of Plants to Iron Deficiency via Iron Uptake, Transport, and Homeostasis.
    Zhang X; Zhang D; Sun W; Wang T
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31100819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification, and Functional and Expression Analyses of the CorA/MRS2/MGT-Type Magnesium Transporter Family in Maize.
    Li H; Du H; Huang K; Chen X; Liu T; Gao S; Liu H; Tang Q; Rong T; Zhang S
    Plant Cell Physiol; 2016 Jun; 57(6):1153-68. PubMed ID: 27084594
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize.
    Li S; Zhou X; Huang Y; Zhu L; Zhang S; Zhao Y; Guo J; Chen J; Chen R
    BMC Plant Biol; 2013 Aug; 13():114. PubMed ID: 23924433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organ-specific expression of genes involved in iron homeostasis in wheat mutant lines with increased grain iron and zinc content.
    Kenzhebayeva S; Atabayeva S; Sarsu F; Abekova A; Shoinbekova S; Omirbekova N; Doktyrbay G; Beisenova A; Shavrukov Y
    PeerJ; 2022; 10():e13515. PubMed ID: 35707120
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants.
    Takahashi M; Yamaguchi H; Nakanishi H; Shioiri T; Nishizawa NK; Mori S
    Plant Physiol; 1999 Nov; 121(3):947-56. PubMed ID: 10557244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays. L.).
    Wang Y; Deng D; Bian Y; Lv Y; Xie Q
    Mol Biol Rep; 2010 Dec; 37(8):3991-4001. PubMed ID: 20232157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deoxymugineic Acid synthase: a gene important for fe-acquisition and homeostasis.
    Bashir K; Nishizawa NK
    Plant Signal Behav; 2006 Nov; 1(6):290-2. PubMed ID: 19704569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals.
    Schaaf G; Ludewig U; Erenoglu BE; Mori S; Kitahara T; von Wirén N
    J Biol Chem; 2004 Mar; 279(10):9091-6. PubMed ID: 14699112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toward mechanistic elucidation of iron acquisition in barley: efficient synthesis of mugineic acids and their transport activities.
    Namba K; Murata Y
    Chem Rec; 2010 Apr; 10(2):140-50. PubMed ID: 20354995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The ratio of phytosiderophores nicotianamine to deoxymugenic acid controls metal homeostasis in rice.
    Banakar R; Fernandez AA; Zhu C; Abadia J; Capell T; Christou P
    Planta; 2019 Oct; 250(4):1339-1354. PubMed ID: 31278466
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading.
    Le Jean M; Schikora A; Mari S; Briat JF; Curie C
    Plant J; 2005 Dec; 44(5):769-82. PubMed ID: 16297069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.