These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 35039069)
1. Graphical calibration curves and the integrated calibration index (ICI) for competing risk models. Austin PC; Putter H; Giardiello D; van Klaveren D Diagn Progn Res; 2022 Jan; 6(1):2. PubMed ID: 35039069 [TBL] [Abstract][Full Text] [Related]
2. Graphical calibration curves and the integrated calibration index (ICI) for survival models. Austin PC; Harrell FE; van Klaveren D Stat Med; 2020 Sep; 39(21):2714-2742. PubMed ID: 32548928 [TBL] [Abstract][Full Text] [Related]
3. The Integrated Calibration Index (ICI) and related metrics for quantifying the calibration of logistic regression models. Austin PC; Steyerberg EW Stat Med; 2019 Sep; 38(21):4051-4065. PubMed ID: 31270850 [TBL] [Abstract][Full Text] [Related]
4. Tree-based models for survival data with competing risks. Kretowska M Comput Methods Programs Biomed; 2018 Jun; 159():185-198. PubMed ID: 29650312 [TBL] [Abstract][Full Text] [Related]
5. Fine-Gray subdistribution hazard models to simultaneously estimate the absolute risk of different event types: Cumulative total failure probability may exceed 1. Austin PC; Steyerberg EW; Putter H Stat Med; 2021 Aug; 40(19):4200-4212. PubMed ID: 33969508 [TBL] [Abstract][Full Text] [Related]
6. Comparison of machine learning and conventional statistical modeling for predicting readmission following acute heart failure hospitalization. Abdul-Samad K; Ma S; Austin DE; Chong A; Wang CX; Wang X; Austin PC; Ross HJ; Wang B; Lee DS Am Heart J; 2024 Nov; 277():93-103. PubMed ID: 39094840 [TBL] [Abstract][Full Text] [Related]
7. Estimation of the Absolute Risk of Cardiovascular Disease and Other Events: Issues With the Use of Multiple Fine-Gray Subdistribution Hazard Models. Austin PC; Putter H; Lee DS; Steyerberg EW Circ Cardiovasc Qual Outcomes; 2022 Feb; 15(2):e008368. PubMed ID: 35098725 [TBL] [Abstract][Full Text] [Related]
8. Accounting for the Competing Risk of Death to Predict Kidney Failure in Adults With Stage 4 Chronic Kidney Disease. Al-Wahsh H; Tangri N; Quinn R; Liu P; Ferguson Ms T; Fiocco M; Lam Md MSc NN; Tonelli M; Ravani P JAMA Netw Open; 2021 May; 4(5):e219225. PubMed ID: 33944922 [TBL] [Abstract][Full Text] [Related]
9. Statistical models versus machine learning for competing risks: development and validation of prognostic models. Kantidakis G; Putter H; Litière S; Fiocco M BMC Med Res Methodol; 2023 Feb; 23(1):51. PubMed ID: 36829145 [TBL] [Abstract][Full Text] [Related]
10. Practical recommendations for reporting Fine-Gray model analyses for competing risk data. Austin PC; Fine JP Stat Med; 2017 Nov; 36(27):4391-4400. PubMed ID: 28913837 [TBL] [Abstract][Full Text] [Related]
11. On the relation between the cause-specific hazard and the subdistribution rate for competing risks data: The Fine-Gray model revisited. Putter H; Schumacher M; van Houwelingen HC Biom J; 2020 May; 62(3):790-807. PubMed ID: 32128860 [TBL] [Abstract][Full Text] [Related]
12. Competing-risks nomograms for predicting cause-specific mortality in parotid-gland carcinoma: A population-based analysis. Xu F; Feng X; Zhao F; Huang Q; Han D; Li C; Zheng S; Lyu J Cancer Med; 2021 Jun; 10(11):3756-3769. PubMed ID: 33960711 [TBL] [Abstract][Full Text] [Related]
13. Random Survival Forests With Competing Events: A Subdistribution-Based Imputation Approach. Behning C; Bigerl A; Wright MN; Sekula P; Berger M; Schmid M Biom J; 2024 Sep; 66(6):e202400014. PubMed ID: 39162087 [TBL] [Abstract][Full Text] [Related]
14. Propensity-score matching with competing risks in survival analysis. Austin PC; Fine JP Stat Med; 2019 Feb; 38(5):751-777. PubMed ID: 30347461 [TBL] [Abstract][Full Text] [Related]
15. Survival analysis in the presence of competing risks. Zhang Z Ann Transl Med; 2017 Feb; 5(3):47. PubMed ID: 28251126 [TBL] [Abstract][Full Text] [Related]
16. Competing and Noncompeting Risk Models for Predicting Kidney Allograft Failure. Truchot A; Raynaud M; Helanterä I; Aubert O; Kamar N; Divard G; Astor B; Legendre C; Hertig A; Buchler M; Crespo M; Akalin E; Pujol GS; Ribeiro de Castro MC; Matas AJ; Ulloa C; Jordan SC; Huang E; Juric I; Basic-Jukic N; Coemans M; Naesens M; Friedewald JJ; Silva HT; Lefaucheur C; Segev DL; Collins GS; Loupy A J Am Soc Nephrol; 2024 Oct; ():. PubMed ID: 39412887 [TBL] [Abstract][Full Text] [Related]
17. Different survival analysis methods for measuring long-term outcomes of Indigenous and non-Indigenous Australian cancer patients in the presence and absence of competing risks. He VY; Condon JR; Baade PD; Zhang X; Zhao Y Popul Health Metr; 2017 Jan; 15(1):1. PubMed ID: 28095862 [TBL] [Abstract][Full Text] [Related]
18. A competing-risks nomogram and recursive partitioning analysis for cause-specific mortality in patients with esophageal neuroendocrine carcinoma. Zhang G; Wu B; Wang X; Li J Dis Esophagus; 2019 Dec; 32(11):. PubMed ID: 30715226 [TBL] [Abstract][Full Text] [Related]
19. Nomograms for Estimating Cause-Specific Death Rates of Patients With Inflammatory Breast Cancer: A Competing-Risks Analysis. Xu F; Yang J; Han D; Huang Q; Li C; Zheng S; Wang H; Lyu J Technol Cancer Res Treat; 2021; 20():15330338211016371. PubMed ID: 34013802 [TBL] [Abstract][Full Text] [Related]
20. Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers. Austin PC; Steyerberg EW Stat Med; 2014 Feb; 33(3):517-35. PubMed ID: 24002997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]