BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35039534)

  • 1. Multimodal deep learning applied to classify healthy and disease states of human microbiome.
    Lee SJ; Rho M
    Sci Rep; 2022 Jan; 12(1):824. PubMed ID: 35039534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene-level metagenomic architectures across diseases yield high-resolution microbiome diagnostic indicators.
    Tierney BT; Tan Y; Kostic AD; Patel CJ
    Nat Commun; 2021 May; 12(1):2907. PubMed ID: 34006865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MetaPheno: A critical evaluation of deep learning and machine learning in metagenome-based disease prediction.
    LaPierre N; Ju CJ; Zhou G; Wang W
    Methods; 2019 Aug; 166():74-82. PubMed ID: 30885720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematically assessing microbiome-disease associations identifies drivers of inconsistency in metagenomic research.
    Tierney BT; Tan Y; Yang Z; Shui B; Walker MJ; Kent BM; Kostic AD; Patel CJ
    PLoS Biol; 2022 Mar; 20(3):e3001556. PubMed ID: 35235560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive Functional Annotation of Metagenomes and Microbial Genomes Using a Deep Learning-Based Method.
    Maranga M; Szczerbiak P; Bezshapkin V; Gligorijevic V; Chandler C; Bonneau R; Xavier RJ; Vatanen T; Kosciolek T
    mSystems; 2023 Apr; 8(2):e0117822. PubMed ID: 37010293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metagenomics Biomarkers Selected for Prediction of Three Different Diseases in Chinese Population.
    Wu H; Cai L; Li D; Wang X; Zhao S; Zou F; Zhou K
    Biomed Res Int; 2018; 2018():2936257. PubMed ID: 29568746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic disease prediction from human gut metagenomic data using boosting GraphSAGE.
    Syama K; Jothi JAA; Khanna N
    BMC Bioinformatics; 2023 Mar; 24(1):126. PubMed ID: 37003965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene-based microbiome representation enhances host phenotype classification.
    DeschĂȘnes T; Tohoundjona FWE; Plante PL; Di Marzo V; Raymond F
    mSystems; 2023 Aug; 8(4):e0053123. PubMed ID: 37404032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metagenome-wide association studies: fine-mining the microbiome.
    Wang J; Jia H
    Nat Rev Microbiol; 2016 Aug; 14(8):508-22. PubMed ID: 27396567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights.
    Pasolli E; Truong DT; Malik F; Waldron L; Segata N
    PLoS Comput Biol; 2016 Jul; 12(7):e1004977. PubMed ID: 27400279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A repository of microbial marker genes related to human health and diseases for host phenotype prediction using microbiome data.
    Han W; Ye Y
    Pac Symp Biocomput; 2019; 24():236-247. PubMed ID: 30864326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations of the human gut microbiome in liver cirrhosis.
    Qin N; Yang F; Li A; Prifti E; Chen Y; Shao L; Guo J; Le Chatelier E; Yao J; Wu L; Zhou J; Ni S; Liu L; Pons N; Batto JM; Kennedy SP; Leonard P; Yuan C; Ding W; Chen Y; Hu X; Zheng B; Qian G; Xu W; Ehrlich SD; Zheng S; Li L
    Nature; 2014 Sep; 513(7516):59-64. PubMed ID: 25079328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Massive metagenomic data analysis using abundance-based machine learning.
    Harris ZN; Dhungel E; Mosior M; Ahn TH
    Biol Direct; 2019 Aug; 14(1):12. PubMed ID: 31370905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepToA: an ensemble deep-learning approach to predicting the theater of activity of a microbiome.
    Zeng W; Gautam A; Huson DH
    Bioinformatics; 2022 Oct; 38(20):4670-4676. PubMed ID: 36029249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic evaluation of supervised machine learning for sample origin prediction using metagenomic sequencing data.
    Chen JC; Tyler AD
    Biol Direct; 2020 Dec; 15(1):29. PubMed ID: 33302990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DL-TODA: A Deep Learning Tool for Omics Data Analysis.
    Cres CM; Tritt A; Bouchard KE; Zhang Y
    Biomolecules; 2023 Mar; 13(4):. PubMed ID: 37189333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbiome-based disease prediction with multimodal variational information bottlenecks.
    Grazioli F; Siarheyeu R; Alqassem I; Henschel A; Pileggi G; Meiser A
    PLoS Comput Biol; 2022 Apr; 18(4):e1010050. PubMed ID: 35404958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples.
    Korem T; Zeevi D; Suez J; Weinberger A; Avnit-Sagi T; Pompan-Lotan M; Matot E; Jona G; Harmelin A; Cohen N; Sirota-Madi A; Thaiss CA; Pevsner-Fischer M; Sorek R; Xavier R; Elinav E; Segal E
    Science; 2015 Sep; 349(6252):1101-1106. PubMed ID: 26229116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of machine learning techniques for creating urban microbial fingerprints.
    Ryan FJ
    Biol Direct; 2019 Aug; 14(1):13. PubMed ID: 31420049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clustering co-abundant genes identifies components of the gut microbiome that are reproducibly associated with colorectal cancer and inflammatory bowel disease.
    Minot SS; Willis AD
    Microbiome; 2019 Aug; 7(1):110. PubMed ID: 31370880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.