These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 35039609)
1. Transcriptomic analysis of choroidal neovascularization reveals dysregulation of immune and fibrosis pathways that are attenuated by a novel anti-fibrotic treatment. Brandli A; Khong FL; Kong RCK; Kelly DJ; Fletcher EL Sci Rep; 2022 Jan; 12(1):859. PubMed ID: 35039609 [TBL] [Abstract][Full Text] [Related]
2. The COX-2-Selective Antagonist (NS-398) Inhibits Choroidal Neovascularization and Subretinal Fibrosis. Zhang R; Liu Z; Zhang H; Zhang Y; Lin D PLoS One; 2016; 11(1):e0146808. PubMed ID: 26760305 [TBL] [Abstract][Full Text] [Related]
3. Animal model of subretinal fibrosis without active choroidal neovascularization. Zandi S; Li Y; Jahnke L; Schweri-Olac A; Ishikawa K; Wada I; Nakao S; Zinkernagel MS; Enzmann V Exp Eye Res; 2023 Apr; 229():109428. PubMed ID: 36803995 [TBL] [Abstract][Full Text] [Related]
4. A Novel Platelet-Activating Factor Receptor Antagonist Inhibits Choroidal Neovascularization and Subretinal Fibrosis. Zhang H; Yang Y; Takeda A; Yoshimura T; Oshima Y; Sonoda KH; Ishibashi T PLoS One; 2013; 8(6):e68173. PubMed ID: 23826375 [TBL] [Abstract][Full Text] [Related]
5. Galectin-1 promotes choroidal neovascularization and subretinal fibrosis mediated via epithelial-mesenchymal transition. Wu D; Kanda A; Liu Y; Kase S; Noda K; Ishida S FASEB J; 2019 Feb; 33(2):2498-2513. PubMed ID: 30277820 [TBL] [Abstract][Full Text] [Related]
6. Single-cell profiling transcriptomic reveals cellular heterogeneity and cellular crosstalk in choroidal neovascularization model. Tong M; Bai Y; Han X; Kong L; Ren L; Zhang L; Li X; Yao J; Yan B Exp Eye Res; 2024 May; 242():109877. PubMed ID: 38537669 [TBL] [Abstract][Full Text] [Related]
7. Semaphorin 3A blocks the formation of pathologic choroidal neovascularization induced by transforming growth factor beta. Bai Y; Liang S; Yu W; Zhao M; Huang L; Zhao M; Li X Mol Vis; 2014; 20():1258-70. PubMed ID: 25352735 [TBL] [Abstract][Full Text] [Related]
8. A Two-Stage Laser-Induced Mouse Model of Subretinal Fibrosis Secondary to Choroidal Neovascularization. Little K; Llorián-Salvador M; Tang M; Du X; O'Shaughnessy Ó; McIlwaine G; Chen M; Xu H Transl Vis Sci Technol; 2020 Mar; 9(4):3. PubMed ID: 32818091 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of YAP ameliorates choroidal neovascularization via inhibiting endothelial cell proliferation. Yan Z; Shi H; Zhu R; Li L; Qin B; Kang L; Chen H; Guan H Mol Vis; 2018; 24():83-93. PubMed ID: 29422766 [TBL] [Abstract][Full Text] [Related]
10. Silencing of YAP attenuates pericyte-myofibroblast transition and subretinal fibrosis in experimental model of choroidal neovascularization. Xu YH; Feng YF; Zou R; Yuan F; Yuan YZ Cell Biol Int; 2022 Aug; 46(8):1249-1263. PubMed ID: 35475568 [TBL] [Abstract][Full Text] [Related]
11. COL10A1 is a novel factor in the development of choroidal neovascularization. Lv D; Chen D; Wang Z; Cui Z; Ma JH; Ji S; Chen J; Tang S Microvasc Res; 2022 Jan; 139():104239. PubMed ID: 34520774 [TBL] [Abstract][Full Text] [Related]
12. Soluble very low-density lipoprotein receptor (sVLDLR) inhibits fibrosis in neovascular age-related macular degeneration. Ma X; Takahashi Y; Wu W; Chen J; Dehdarani M; Liang W; Shin YH; Benyajati S; Ma JX FASEB J; 2021 Dec; 35(12):e22058. PubMed ID: 34820908 [TBL] [Abstract][Full Text] [Related]
13. Differential Expressions of microRNAs and Transfer RNA-derived Small RNAs: Potential Targets of Choroidal Neovascularization. Zhang L; Liu S; Wang JH; Zou J; Zeng H; Zhao H; Zhang B; He Y; Shi J; Yoshida S; Zhou Y Curr Eye Res; 2019 Nov; 44(11):1226-1235. PubMed ID: 31136199 [No Abstract] [Full Text] [Related]
14. Suppression of choroidal neovascularization and epithelial-mesenchymal transition in retinal pigmented epithelium by adeno-associated virus-mediated overexpression of CCN5 in mice. Im S; Han JW; Park EJ; Bang JH; Shin HJ; Chang HS; Woo KM; Park WJ; Park TK PLoS One; 2022; 17(6):e0269937. PubMed ID: 35696413 [TBL] [Abstract][Full Text] [Related]
15. Adrenomedullin inhibits choroidal neovascularization via CCL2 in the retinal pigment epithelium. Yuda K; Takahashi H; Inoue T; Ueta T; Iriyama A; Kadonosono K; Tamaki Y; Aburatani H; Nagai R; Yanagi Y Am J Pathol; 2012 Oct; 181(4):1464-72. PubMed ID: 22841816 [TBL] [Abstract][Full Text] [Related]
16. Promiscuous Chemokine Antagonist (BKT130) Suppresses Laser-Induced Choroidal Neovascularization by Inhibition of Monocyte Recruitment. Hagbi-Levi S; Abraham M; Tiosano L; Rinsky B; Grunin M; Eizenberg O; Peled A; Chowers I J Immunol Res; 2019; 2019():8535273. PubMed ID: 31467935 [TBL] [Abstract][Full Text] [Related]
17. Hypoxia specific SDF-1 expression by retinal pigment epithelium initiates bone marrow-derived cells to participate in Choroidal neovascularization in a laser-induced mouse model. Zhang ZX; Wang YS; Shi YY; Hou HY; Zhang C; Cai Y; Dou GR; Yao LB; Li FY Curr Eye Res; 2011 Sep; 36(9):838-49. PubMed ID: 21851170 [TBL] [Abstract][Full Text] [Related]
18. Retinal Inhibition of CCR3 Induces Retinal Cell Death in a Murine Model of Choroidal Neovascularization. Wang H; Han X; Gambhir D; Becker S; Kunz E; Liu AJ; Hartnett ME PLoS One; 2016; 11(6):e0157748. PubMed ID: 27309355 [TBL] [Abstract][Full Text] [Related]
19. A Circulating MicroRNA Profile in a Laser-Induced Mouse Model of Choroidal Neovascularization. Kiel C; Berber P; Karlstetter M; Aslanidis A; Strunz T; Langmann T; Grassmann F; Weber BHF Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32294914 [TBL] [Abstract][Full Text] [Related]
20. Repurposing bortezomib for choroidal neovascularization treatment via antagonizing VEGF-A and PDGF-D mediated signaling. Liu Y; Feng M; Cai J; Li S; Dai X; Shan G; Wu S Exp Eye Res; 2021 Mar; 204():108446. PubMed ID: 33476605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]