These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35039954)

  • 1. Practical observations on the use of fluorescent reporter systems in Clostridioides difficile.
    Oliveira Paiva AM; Friggen AH; Douwes R; Wittekoek B; Smits WK
    Antonie Van Leeuwenhoek; 2022 Feb; 115(2):297-323. PubMed ID: 35039954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Dual-Fluorescent-Reporter System in Clostridioides difficile Reveals a Division of Labor between Virulence and Transmission Gene Expression.
    Donnelly ML; Shrestha S; Ribis JW; Kuhn P; Krasilnikov M; Alves Feliciano C; Shen A
    mSphere; 2022 Jun; 7(3):e0013222. PubMed ID: 35638354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spo0A Suppresses
    Dhungel BA; Govind R
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33148827
    [No Abstract]   [Full Text] [Related]  

  • 4. The C-Terminal Domain of Clostridioides difficile TcdC Is Exposed on the Bacterial Cell Surface.
    Oliveira Paiva AM; de Jong L; Friggen AH; Smits WK; Corver J
    J Bacteriol; 2020 Oct; 202(22):. PubMed ID: 32868401
    [No Abstract]   [Full Text] [Related]  

  • 5. Second messenger signaling in Clostridioides difficile.
    Purcell EB
    Curr Opin Microbiol; 2022 Feb; 65():138-144. PubMed ID: 34864551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autoinducing peptide-based quorum signaling systems in Clostridioides difficile.
    Ahmed UKB; Ballard JD
    Curr Opin Microbiol; 2022 Feb; 65():81-86. PubMed ID: 34773906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Strong Anaerobic Fluorescent Reporters for Clostridium acetobutylicum and Clostridium ljungdahlii Using HaloTag and SNAP-tag Proteins.
    Charubin K; Streett H; Papoutsakis ET
    Appl Environ Microbiol; 2020 Oct; 86(20):. PubMed ID: 32769192
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Harrison MA; Faulds-Pain A; Kaur H; Dupuy B; Henriques AO; Martin-Verstraete I; Wren BW; Dawson LF
    J Bacteriol; 2020 Aug; 202(18):. PubMed ID: 32631945
    [No Abstract]   [Full Text] [Related]  

  • 9. Predictive regulatory and metabolic network models for systems analysis of Clostridioides difficile.
    Arrieta-Ortiz ML; Immanuel SRC; Turkarslan S; Wu WJ; Girinathan BP; Worley JN; DiBenedetto N; Soutourina O; Peltier J; Dupuy B; Bry L; Baliga NS
    Cell Host Microbe; 2021 Nov; 29(11):1709-1723.e5. PubMed ID: 34637780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of an operon required for growth on cellobiose in
    Hasan MK; Dhungel BA; Govind R
    Microbiology (Reading); 2021 Aug; 167(8):. PubMed ID: 34410904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined and Distinct Roles of Agr Proteins in Clostridioides difficile 630 Sporulation, Motility, and Toxin Production.
    Ahmed UKB; Shadid TM; Larabee JL; Ballard JD
    mBio; 2020 Dec; 11(6):. PubMed ID: 33443122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Xylose-Inducible Expression System and a CRISPR Interference Plasmid for Targeted Knockdown of Gene Expression in Clostridioides difficile.
    Müh U; Pannullo AG; Weiss DS; Ellermeier CD
    J Bacteriol; 2019 Jul; 201(14):. PubMed ID: 30745377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redefining the Clostridioides difficile σ
    Boekhoud IM; Michel AM; Corver J; Jahn D; Smits WK
    mSphere; 2020 Sep; 5(5):. PubMed ID: 32938698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emergence of a non-sporulating secondary phenotype in Clostridium (Clostridioides) difficile ribotype 078 isolated from humans and animals.
    Connor MC; McGrath JW; McMullan G; Marks N; Guelbenzu M; Fairley DJ
    Sci Rep; 2019 Sep; 9(1):13722. PubMed ID: 31548637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of functionality of type II toxin-antitoxin systems of Clostridioides difficile R20291.
    Álvarez R; Ortega-Fuentes C; Queraltó C; Inostroza O; Díaz-Yáñez F; González R; Calderón IL; Fuentes JA; Paredes-Sabja D; Gil F
    Microbiol Res; 2020 Oct; 239():126539. PubMed ID: 32622285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The (p)ppGpp Synthetase RSH Mediates Stationary-Phase Onset and Antibiotic Stress Survival in Clostridioides difficile.
    Pokhrel A; Poudel A; Castro KB; Celestine MJ; Oludiran A; Rinehold AJ; Resek AM; Mhanna MA; Purcell EB
    J Bacteriol; 2020 Sep; 202(19):. PubMed ID: 32661079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Revised Understanding of Clostridioides difficile Spore Germination.
    Lawler AJ; Lambert PA; Worthington T
    Trends Microbiol; 2020 Sep; 28(9):744-752. PubMed ID: 32781028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human intestinal enteroids as a model of
    Engevik MA; Danhof HA; Chang-Graham AL; Spinler JK; Engevik KA; Herrmann B; Endres BT; Garey KW; Hyser JM; Britton RA; Versalovic J
    Am J Physiol Gastrointest Liver Physiol; 2020 May; 318(5):G870-G888. PubMed ID: 32223302
    [No Abstract]   [Full Text] [Related]  

  • 19. Identification and characterization of a gene cluster required for proper rod shape, cell division, and pathogenesis in Clostridium difficile.
    Ransom EM; Williams KB; Weiss DS; Ellermeier CD
    J Bacteriol; 2014 Jun; 196(12):2290-300. PubMed ID: 24727226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How the Anaerobic Enteropathogen
    Kint N; Alves Feliciano C; Martins MC; Morvan C; Fernandes SF; Folgosa F; Dupuy B; Texeira M; Martin-Verstraete I
    mBio; 2020 Sep; 11(5):. PubMed ID: 32900801
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.