BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 35040140)

  • 1. Encapsulation of Curcumin in a Ternary Nanocomplex Prepared with Carboxymethyl Short Linear Glucan-Sodium-Caseinate-Pectin Via Electrostatic Interactions.
    Li W; Yu Y; Dai Z; Peng J; Wu J; Wang Z
    J Food Sci; 2022 Feb; 87(2):780-794. PubMed ID: 35040140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encapsulation of Phloretin in a Ternary Nanocomplex Prepared with Phytoglycogen-Caseinate-Pectin via Electrostatic Interactions and Chemical Cross-Linking.
    Chen Y; Xue J; Luo Y
    J Agric Food Chem; 2020 Nov; 68(46):13221-13230. PubMed ID: 32255614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidized Dextran as a Macromolecular Crosslinker Stabilizes the Zein/Caseinate Nanocomplex for the Potential Oral Delivery of Curcumin.
    Rodriguez NJ; Hu Q; Luo Y
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31717559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and Characterization of Zein Composite Particles Coated by Caseinate-Pectin Electrostatic Complexes with Improved Structural Stability in Acidic Aqueous Environments.
    Zhang Y; Wang B; Wu Y; Gao B; Yu LL
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31373330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Cationic Modified Short Linear Glucan and Fabrication of Complex Nanoparticles with Low and High Methoxy Pectin.
    Li W; Yu Y; Peng J; Dai Z; Wu J; Wang Z; Chen H
    Foods; 2021 Oct; 10(10):. PubMed ID: 34681558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of lipid nanoparticles with high loading capacity and exceptional gastrointestinal stability for potential oral delivery applications.
    Wang T; Xue J; Hu Q; Zhou M; Luo Y
    J Colloid Interface Sci; 2017 Dec; 507():119-130. PubMed ID: 28780331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled caseinate-laponite® nanocomposites for curcumin delivery.
    Qu B; Xue J; Luo Y
    Food Chem; 2021 Nov; 363():130338. PubMed ID: 34161872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid lipid nanoparticles coated with cross-linked polymeric double layer for oral delivery of curcumin.
    Wang T; Ma X; Lei Y; Luo Y
    Colloids Surf B Biointerfaces; 2016 Dec; 148():1-11. PubMed ID: 27588376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Casein/pectin nanocomplexes as potential oral delivery vehicles.
    Luo Y; Pan K; Zhong Q
    Int J Pharm; 2015; 486(1-2):59-68. PubMed ID: 25800678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and characterization of self-assembled whey protein isolate/short linear glucan core-shell nanoparticles for sustained release of curcumin.
    Li X; Xu T; Wu C; Fan G; Li T; Wang Y; Zhou D
    Food Chem; 2023 May; 407():135124. PubMed ID: 36473353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules.
    Pan K; Zhong Q; Baek SJ
    J Agric Food Chem; 2013 Jun; 61(25):6036-43. PubMed ID: 23734864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of zein-caseinate-pectin complex nanoparticles for encapsulation of curcumin: pectin extracted by high-speed shearing from passion fruit (Passiflora edulis f. flavicarpa) peel.
    Li X; Lin Y; Huang Y; Li X; An F; Song H; Huang Q
    J Sci Food Agric; 2024 Mar; ():. PubMed ID: 38520286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of foxtail millet prolamin/caseinate/chitosan hydrochloride composite nanoparticles using antisolvent and pH-driven methods for curcumin delivery.
    Chen X; Wu YC; Qian LH; Zhang YH; Gong PX; Liu W; Li HJ
    Food Chem; 2023 Mar; 404(Pt A):134604. PubMed ID: 36270228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatible Polyelectrolyte Complex Nanoparticles from Lactoferrin and Pectin as Potential Vehicles for Antioxidative Curcumin.
    Yan JK; Qiu WY; Wang YY; Wu JY
    J Agric Food Chem; 2017 Jul; 65(28):5720-5730. PubMed ID: 28657749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A curcumin oral delivery system based on sodium caseinate and carboxymethylpachymaran nanocomposites.
    Wang L; Mao J; Zhou Q; Deng Q; Zheng L; Shi J
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126698. PubMed ID: 37678690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quaternized curdlan/pectin polyelectrolyte complexes as biocompatible nanovehicles for curcumin.
    Wu LX; Qiao ZR; Cai WD; Qiu WY; Yan JK
    Food Chem; 2019 Sep; 291():180-186. PubMed ID: 31006457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Physicochemical Properties of Curcumin-Loaded Solid Lipid Nanoparticles Stabilized by Sodium Caseinate-Lactose Maillard Conjugate.
    Huang S; He J; Cao L; Lin H; Zhang W; Zhong Q
    J Agric Food Chem; 2020 Jul; 68(26):7072-7081. PubMed ID: 32511914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of oxidized dextran on the stability of gallic acid-modified chitosan-sodium caseinate nanoparticles.
    Shen D; Hu Q; Sun J; Pang X; Li X; Lu Y
    Int J Biol Macromol; 2021 Dec; 192():360-368. PubMed ID: 34634328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Different Molecular Weight Oxidized Dextran as Crosslinkers on Stability and Antioxidant Capacity of Curcumin-Loaded Nanoparticles.
    Shen D; Chen H; Li M; Yu L; Li X; Liu H; Hu Q; Lu Y
    Foods; 2023 Jun; 12(13):. PubMed ID: 37444270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of zein/carboxymethyl dextrin nanoparticles to encapsulate curcumin: Physicochemical stability, antioxidant activity and controlled release properties.
    Meng R; Wu Z; Xie QT; Cheng JS; Zhang B
    Food Chem; 2021 Mar; 340():127893. PubMed ID: 32889202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.