These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 35040410)

  • 1. Biomedical Applications of Carbohydrate-based Polyurethane: From Biosynthesis to Degradation.
    Batool JA; Rehman K; Qader A; Akash MSH
    Curr Pharm Des; 2022; 28(20):1669-1687. PubMed ID: 35040410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-property relationships and biocompatibility of carbohydrate crosslinked polyurethanes.
    Solanki A; Mehta J; Thakore S
    Carbohydr Polym; 2014 Sep; 110():338-44. PubMed ID: 24906764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on carbohydrate embedded polyurethanes: An emerging area in the scope of biomedical applications.
    Solanki A; Das M; Thakore S
    Carbohydr Polym; 2018 Feb; 181():1003-1016. PubMed ID: 29253925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomedical Polyurethanes for Anti-Cancer Drug Delivery Systems: A Brief, Comprehensive Review.
    Sobczak M; Kędra K
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heparin based polyurethanes: A state-of-the-art review.
    Zia F; Zia KM; Zuber M; Tabasum S; Rehman S
    Int J Biol Macromol; 2016 Mar; 84():101-11. PubMed ID: 26666430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique.
    Zhang C; Wen X; Vyavahare NR; Boland T
    Biomaterials; 2008 Oct; 29(28):3781-91. PubMed ID: 18602156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-Cancer Drug Delivery Using Carbohydrate-Based Polymers.
    Ranjbari J; Mokhtarzadeh A; Alibakhshi A; Tabarzad M; Hejazi M; Ramezani M
    Curr Pharm Des; 2018 Feb; 23(39):6019-6032. PubMed ID: 28482782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological Effects, Applications and Design Strategies of Medical Polyurethanes Modified by Nanomaterials.
    Wang J; Dai D; Xie H; Li D; Xiong G; Zhang C
    Int J Nanomedicine; 2022; 17():6791-6819. PubMed ID: 36600880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Zwitterionic Polyurethanes: State-of-the-Art Review.
    Zhang J; Lv S; Zhao X; Ma S; Zhou F
    Macromol Rapid Commun; 2024 Mar; 45(5):e2300606. PubMed ID: 38087799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications.
    Barrioni BR; de Carvalho SM; Oréfice RL; de Oliveira AA; Pereira Mde M
    Mater Sci Eng C Mater Biol Appl; 2015; 52():22-30. PubMed ID: 25953536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Current Versatility of Polyurethane Three-Dimensional Printing for Biomedical Applications.
    Griffin M; Castro N; Bas O; Saifzadeh S; Butler P; Hutmacher DW
    Tissue Eng Part B Rev; 2020 Jun; 26(3):272-283. PubMed ID: 32089089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress of Polysaccharide-Contained Polyurethanes for Biomedical Applications.
    Ju DB; Lee JC; Hwang SK; Cho CS; Kim HJ
    Tissue Eng Regen Med; 2022 Oct; 19(5):891-912. PubMed ID: 35819712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Versatile Functionalization of Polysaccharides via Polymer Grafts: From Design to Biomedical Applications.
    Hu Y; Li Y; Xu FJ
    Acc Chem Res; 2017 Feb; 50(2):281-292. PubMed ID: 28068064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alginate based polyurethanes: A review of recent advances and perspective.
    Zia KM; Zia F; Zuber M; Rehman S; Ahmad MN
    Int J Biol Macromol; 2015 Aug; 79():377-87. PubMed ID: 25964178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable polyurethane scaffolds in regenerative medicine: Clinical translation review.
    Pedersen DD; Kim S; Wagner WR
    J Biomed Mater Res A; 2022 Aug; 110(8):1460-1487. PubMed ID: 35481723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-property studies on carbohydrate-derived polymers for use as protein-resistant biomaterials.
    Metzke M; Guan Z
    Biomacromolecules; 2008 Jan; 9(1):208-15. PubMed ID: 18078325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucomannan based polyurethanes: A critical short review of recent advances and future perspectives.
    Zia F; Zia KM; Zuber M; Ahmad HB; Muneer M
    Int J Biol Macromol; 2016 Jun; 87():229-36. PubMed ID: 26923674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyurethane-based drug delivery systems.
    Cherng JY; Hou TY; Shih MF; Talsma H; Hennink WE
    Int J Pharm; 2013 Jun; 450(1-2):145-62. PubMed ID: 23632262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Carbohydrate-Based Particles for Biomedical Applications: Strategies to Construct and Modify.
    Thodikayil AT; Sharma S; Saha S
    ACS Appl Bio Mater; 2021 Apr; 4(4):2907-2940. PubMed ID: 35014384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications.
    Usman A; Zia KM; Zuber M; Tabasum S; Rehman S; Zia F
    Int J Biol Macromol; 2016 May; 86():630-45. PubMed ID: 26851360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.