These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 35040432)

  • 41. Pollinators exert natural selection on flower size and floral display in Penstemon digitalis.
    Parachnowitsch AL; Kessler A
    New Phytol; 2010 Oct; 188(2):393-402. PubMed ID: 20723076
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Competition between anthocyanin and flavonol biosynthesis produces spatial pattern variation of floral pigments between Mimulus species.
    Yuan YW; Rebocho AB; Sagawa JM; Stanley LE; Bradshaw HD
    Proc Natl Acad Sci U S A; 2016 Mar; 113(9):2448-53. PubMed ID: 26884205
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pollinator-driven ecological speciation in plants: new evidence and future perspectives.
    Van der Niet T; Peakall R; Johnson SD
    Ann Bot; 2014 Jan; 113(2):199-211. PubMed ID: 24418954
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Color and scent: how single genes influence pollinator attraction.
    Sheehan H; Hermann K; Kuhlemeier C
    Cold Spring Harb Symp Quant Biol; 2012; 77():117-33. PubMed ID: 23467550
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pollinator responses to variation in floral display and flower size in dioecious Sagittaria latifolia (Alismataceae).
    Glaettli M; Barrett SCH
    New Phytol; 2008; 179(4):1193-1201. PubMed ID: 18627490
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pollinator specialization and pollination syndromes of three related North American Silene.
    Reynolds RJ; Westbrook MJ; Rohde AS; Cridland JM; Fenster CB; Dudash MR
    Ecology; 2009 Aug; 90(8):2077-87. PubMed ID: 19739370
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MYB-FL controls gain and loss of floral UV absorbance, a key trait affecting pollinator preference and reproductive isolation.
    Sheehan H; Moser M; Klahre U; Esfeld K; Dell'Olivo A; Mandel T; Metzger S; Vandenbussche M; Freitas L; Kuhlemeier C
    Nat Genet; 2016 Feb; 48(2):159-66. PubMed ID: 26656847
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatial variation in pollinator-mediated selection on phenology, floral display and spur length in the orchid Gymnadenia conopsea.
    Chapurlat E; Ågren J; Sletvold N
    New Phytol; 2015 Dec; 208(4):1264-75. PubMed ID: 26183369
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of major quantitative trait loci underlying floral pollination syndrome divergence in Penstemon.
    Wessinger CA; Hileman LC; Rausher MD
    Philos Trans R Soc Lond B Biol Sci; 2014 Aug; 369(1648):. PubMed ID: 24958923
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional decoupling between flowers and leaves in the Ameroglossum pernambucense complex can facilitate local adaptation across a pollinator and climatic heterogeneous landscape.
    Wanderley AM; Galetto L; Machado IC
    J Evol Biol; 2016 Mar; 29(3):528-40. PubMed ID: 26663030
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Floral divergence, pollinator partitioning and the spatiotemporal pattern of plant-pollinator interactions in three sympatric Adenophora species.
    Liu CQ; Huang SQ
    Oecologia; 2013 Dec; 173(4):1411-23. PubMed ID: 23824141
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Floral morphs of
    Berry E; Geeta R
    J Biosci; 2021; 46():. PubMed ID: 33969829
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Flower traits associated with the visitation patterns of bees.
    Rowe L; Gibson D; Bahlai CA; Gibbs J; Landis DA; Isaacs R
    Oecologia; 2020 Jun; 193(2):511-522. PubMed ID: 32495034
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of pollinators in floral diversification in a clade of generalist flowers.
    Gómez JM; Perfectti F; Lorite J
    Evolution; 2015 Apr; 69(4):863-78. PubMed ID: 25757195
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatiotemporal variation in the role of floral traits in shaping tropical plant-pollinator interactions.
    Klomberg Y; Tropek R; Mertens JEJ; Kobe IN; Hodeček J; Raška J; Fominka NT; Souto-Vilarós D; Janečková P; Janeček Š
    Ecol Lett; 2022 Apr; 25(4):839-850. PubMed ID: 35006639
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Patterns of floral nectar standing crops allow plants to manipulate their pollinators.
    Pyke GH; Kalman JRM; Bordin DM; Blanes L; Doble PA
    Sci Rep; 2020 Feb; 10(1):1660. PubMed ID: 32015366
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ECOLOGICAL COSTS OF PLANT RESISTANCE TO HERBIVORES IN THE CURRENCY OF POLLINATION.
    Strauss SY; Siemens DH; Decher MB; Mitchell-Olds T
    Evolution; 1999 Aug; 53(4):1105-1113. PubMed ID: 28565516
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The evolvability of animal-pollinated flowers: towards predicting adaptation to novel pollinator communities.
    Opedal ØH
    New Phytol; 2019 Jan; 221(2):1128-1135. PubMed ID: 30145801
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of ultraviolet reflectance and pattern in the pollination system of
    Klomberg Y; Dywou Kouede R; Bartoš M; Mertens JEJ; Tropek R; Fokam EB; Janeček Š
    AoB Plants; 2019 Oct; 11(5):plz057. PubMed ID: 31649811
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effects of pollination, herbivory and autonomous selfing on the maintenance of flower colour variation in Silenelittorea.
    Buide ML; Del Valle JC; Prado-Comesaña A; Narbona E
    Plant Biol (Stuttg); 2021 Mar; 23(2):275-284. PubMed ID: 33179369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.