These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35040464)

  • 1. Accelerated thermal reaction kinetics by indirect microwave heating of a microwave-transparent substrate.
    Tavakoli A; Stiegman AE; Dudley GB
    Phys Chem Chem Phys; 2022 Feb; 24(5):2794-2799. PubMed ID: 35040464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Measurement of the Selective Microwave-Induced Heating of Agglomerates of Dipolar Molecules: The Origin of and Parameters Controlling a Microwave Specific Superheating Effect.
    Tao Y; Teng C; Musho TD; van de Burgt L; Lochner E; Heller WT; Strouse GF; Dudley GB; Stiegman AE
    J Phys Chem B; 2021 Mar; 125(8):2146-2156. PubMed ID: 33605727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-specific acceleration of a Friedel-Crafts reaction: evidence for selective heating in homogeneous solution.
    Rosana MR; Hunt J; Ferrari A; Southworth TA; Tao Y; Stiegman AE; Dudley GB
    J Org Chem; 2014 Aug; 79(16):7437-50. PubMed ID: 25050855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon carbide passive heating elements in microwave-assisted organic synthesis.
    Kremsner JM; Kappe CO
    J Org Chem; 2006 Jun; 71(12):4651-8. PubMed ID: 16749800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parameters affecting the microwave-specific acceleration of a chemical reaction.
    Chen PK; Rosana MR; Dudley GB; Stiegman AE
    J Org Chem; 2014 Aug; 79(16):7425-36. PubMed ID: 25050921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
    Gawande MB; Shelke SN; Zboril R; Varma RS
    Acc Chem Res; 2014 Apr; 47(4):1338-48. PubMed ID: 24666323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave Heating Outperforms Conventional Heating for a Thermal Reaction that Produces a Thermally Labile Product: Observations Consistent with Selective Microwave Heating.
    Duangkamol C; Batsomboon P; Stiegman AE; Dudley GB
    Chem Asian J; 2019 Aug; 14(15):2594-2597. PubMed ID: 31157510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave catalyzed carbothermic reduction of zinc oxide and zinc ferrite: effect of microwave energy on the reaction activation energy.
    Omran M; Fabritius T; Heikkinen EP; Vuolio T; Yu Y; Chen G; Kacar Y
    RSC Adv; 2020 Jun; 10(40):23959-23968. PubMed ID: 35517350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the existence of nonthermal/specific microwave effects using silicon carbide heating elements as power modulators.
    Razzaq T; Kremsner JM; Kappe CO
    J Org Chem; 2008 Aug; 73(16):6321-9. PubMed ID: 18613726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subtle Microwave-Induced Overheating Effects in an Industrial Demethylation Reaction and Their Direct Use in the Development of an Innovative Microwave Reactor.
    De Bruyn M; Budarin VL; Sturm GSJ; Stefanidis GD; Radoiu M; Stankiewicz A; Macquarrie DJ
    J Am Chem Soc; 2017 Apr; 139(15):5431-5436. PubMed ID: 28345911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave-specific acceleration of a retro-Diels-Alder reaction.
    Frasso MA; Stiegman AE; Dudley GB
    Chem Commun (Camb); 2020 Sep; 56(76):11247-11250. PubMed ID: 32820765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-Assisted Superheating and/or Microwave-Specific Superboiling (Nucleation-Limited Boiling) of Liquids Occurs under Certain Conditions but is Mitigated by Stirring.
    Ferrari A; Hunt J; Stiegman A; Dudley GB
    Molecules; 2015 Dec; 20(12):21672-80. PubMed ID: 26690096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy efficient sludge solubilization by microwave irradiation under carbon nanotube (CNT)-coated condition.
    Kang KH; Kim J; Jeon H; Byun I
    J Environ Manage; 2020 Apr; 259():110089. PubMed ID: 31929033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Below and above boiling point comparison of microwave irradiation and conductive heating for municipal sludge digestion under identical heating/cooling profiles.
    Hosseini Koupaie E; Eskicioglu C
    Bioresour Technol; 2015; 187():235-245. PubMed ID: 25863200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time dependence of component temperatures in microwave heated immiscible liquid mixture.
    Kennedy A; Reznik A; Tadesse S; Nunes J
    J Microw Power Electromagn Energy; 2009; 43(2):52-62. PubMed ID: 21384714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating microwave-heated open systems: tuning competitive sorption in zeolites.
    Santander JE; Conner WC; Jobic H; Auerbach SM
    J Phys Chem B; 2009 Oct; 113(42):13776-81. PubMed ID: 19534490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of microwave heating on liquid-liquid phase inversion and temperature rates for immiscible mixtures.
    Kennedy A; Tadesse S; Nunes J; Reznik A
    J Microw Power Electromagn Energy; 2011; 45(1):5-14. PubMed ID: 24427868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of direct heating, thermal conduction and perfusion during radiofrequency and microwave ablation.
    Schramm W; Yang D; Haemmerich D
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5013-6. PubMed ID: 17946669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of interstitial thermal coagulation: comparative evaluation of microwave and ultrasound applicators.
    Deardorff DL; Diederich CJ; Nau WH
    Med Phys; 2001 Jan; 28(1):104-17. PubMed ID: 11213915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Newman-Kwart rearrangement: a microwave kinetic study.
    Gilday JP; Lenden P; Moseley JD; Cox BG
    J Org Chem; 2008 Apr; 73(8):3130-4. PubMed ID: 18358042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.