These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 35040622)
1. Influence of Fluorine Substitution on the Photovoltaic Performance of Wide Band Gap Polymer Donors for Polymer Solar Cells. Shi Y; Ma R; Wang X; Liu T; Li Y; Fu S; Yang K; Wang Y; Yu C; Jiao L; Wei X; Fang J; Xue D; Yan H ACS Appl Mater Interfaces; 2022 Feb; 14(4):5740-5749. PubMed ID: 35040622 [TBL] [Abstract][Full Text] [Related]
2. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Li Y Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572 [TBL] [Abstract][Full Text] [Related]
3. Wide Band Gap and Highly Conjugated Copolymers Incorporating 2-(Triisopropylsilylethynyl)thiophene-Substituted Benzodithiophene for Efficient Non-Fullerene Organic Solar Cells. Wang L; Liu H; Huai Z; Yang S ACS Appl Mater Interfaces; 2017 Aug; 9(34):28828-28837. PubMed ID: 28792202 [TBL] [Abstract][Full Text] [Related]
4. Easily Accessible Low Band Gap Polymer for Efficient Nonfullerene Polymer Solar Cells with a Low E Park M; Jung JW ACS Appl Mater Interfaces; 2019 Feb; 11(5):5435-5440. PubMed ID: 30623665 [TBL] [Abstract][Full Text] [Related]
5. Polymer Acceptors Containing B←N Units for Organic Photovoltaics. Zhao R; Liu J; Wang L Acc Chem Res; 2020 Aug; 53(8):1557-1567. PubMed ID: 32692535 [TBL] [Abstract][Full Text] [Related]
6. Influence of Alkyl Substitution Position on Wide-Bandgap Polymers in High-Efficiency Nonfullerene Polymer Solar Cells. Guo Q; Li W; Li G; Wang K; Guo X; Zhang M; Li Y; Wong WY Macromol Rapid Commun; 2020 Nov; 41(21):e2000170. PubMed ID: 32776395 [TBL] [Abstract][Full Text] [Related]
7. Enhancing the Photovoltaic Performance of a Benzo[ Feng S; Lu H; Liu Y; Xue W; Zhang C; Zhang H; Ma W; Huang W; Bo Z ACS Appl Mater Interfaces; 2020 Nov; 12(47):53021-53028. PubMed ID: 33170610 [TBL] [Abstract][Full Text] [Related]
8. A Highly Crystalline Wide-Band-Gap Conjugated Polymer toward High-Performance As-Cast Nonfullerene Polymer Solar Cells. Jiang H; Wang Z; Zhang L; Zhong A; Liu X; Pan F; Cai W; Inganäs O; Liu Y; Chen J; Cao Y ACS Appl Mater Interfaces; 2017 Oct; 9(41):36061-36069. PubMed ID: 28945335 [TBL] [Abstract][Full Text] [Related]
9. Understanding the Critical Role of Sequential Fluorination of Phenylene Units on the Properties of Dicarboxylate Bithiophene-Based Wide-Bandgap Polymer Donors for Non-Fullerene Organic Solar Cells. Kini GP; Lee EJ; Jeon SJ; Moon DK Macromol Rapid Commun; 2021 May; 42(9):e2000743. PubMed ID: 33644922 [TBL] [Abstract][Full Text] [Related]
10. Intermolecular Interactions, Morphology, and Photovoltaic Patterns in p-i-n Heterojunction Solar Cells With Fluorine-Substituted Organic Photovoltaic Materials. Li Q; Liao X; Sun Y; Xu Y; Liu S; Wang LM; Cao Z; Zhan X; Zhu T; Xiao B; Cai YP; Huang F Small; 2024 Mar; 20(13):e2308165. PubMed ID: 37968247 [TBL] [Abstract][Full Text] [Related]
11. Molecular Engineering Enhances the Charge Carriers Transport in Wide Band-Gap Polymer Donors Based Polymer Solar Cells. Liu S; Yi S; Qing P; Li W; Gu B; He Z; Zhang B Molecules; 2020 Sep; 25(18):. PubMed ID: 32911728 [TBL] [Abstract][Full Text] [Related]
12. Developing Wide Bandgap Polymers Based on Sole Benzodithiophene Units for Efficient Polymer Solar Cells. Xu X; Lee YW; Woo HY; Li Y; Peng Q Chemistry; 2020 Sep; 26(49):11241-11249. PubMed ID: 32227512 [TBL] [Abstract][Full Text] [Related]
13. High-Performance Nonfullerene Polymer Solar Cells Based on a Wide-Bandgap Polymer without Extra Treatment. Li G; Xu Q; Chang C; Fan Q; Zhu X; Li W; Guo X; Zhang M; Wong WY Macromol Rapid Commun; 2019 Jan; 40(1):e1800660. PubMed ID: 30350437 [TBL] [Abstract][Full Text] [Related]
14. 1,8-Naphthalimide-Based Planar Small Molecular Acceptor for Organic Solar Cells. Zhang J; Zhang X; Xiao H; Li G; Liu Y; Li C; Huang H; Chen X; Bo Z ACS Appl Mater Interfaces; 2016 Mar; 8(8):5475-83. PubMed ID: 26845638 [TBL] [Abstract][Full Text] [Related]
15. A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells. Li S; Ye L; Zhao W; Yan H; Yang B; Liu D; Li W; Ade H; Hou J J Am Chem Soc; 2018 Jun; 140(23):7159-7167. PubMed ID: 29737160 [TBL] [Abstract][Full Text] [Related]
16. Nonhalogenated-Solvent-Processed Efficient Polymer Solar Cells Enabled by Medium-Band-Gap A-π-D-π-A Small-Molecule Acceptors Based on a 6,12-Dihydro-diindolo[1,2- Chen L; Zeng M; Weng C; Tan S; Shen P ACS Appl Mater Interfaces; 2019 Dec; 11(51):48134-48146. PubMed ID: 31823611 [TBL] [Abstract][Full Text] [Related]
17. Constructing a Strongly Absorbing Low-Bandgap Polymer Acceptor for High-Performance All-Polymer Solar Cells. Zhang ZG; Yang Y; Yao J; Xue L; Chen S; Li X; Morrison W; Yang C; Li Y Angew Chem Int Ed Engl; 2017 Oct; 56(43):13503-13507. PubMed ID: 28856814 [TBL] [Abstract][Full Text] [Related]
18. Toward Efficient All-Polymer Solar Cells via Halogenation on Polymer Acceptors. Li Y; Jia Z; Zhang Q; Wu Z; Qin H; Yang J; Wen S; Woo HY; Ma W; Yang R; Yuan J ACS Appl Mater Interfaces; 2020 Jul; 12(29):33028-33038. PubMed ID: 32583664 [TBL] [Abstract][Full Text] [Related]
19. Dithienoquinoxalineimide-Based Polymer Donor Enables All-Polymer Solar Cells Over 19 % Efficiency. Wang Z; Wang X; Tu L; Wang H; Du M; Dai T; Guo Q; Shi Y; Zhou E Angew Chem Int Ed Engl; 2024 May; 63(21):e202319755. PubMed ID: 38386897 [TBL] [Abstract][Full Text] [Related]
20. Non-fullerene organic solar cells based on diketopyrrolopyrrole polymers as electron donors and ITIC as an electron acceptor. Jiang X; Xu Y; Wang X; Wu Y; Feng G; Li C; Ma W; Li W Phys Chem Chem Phys; 2017 Mar; 19(11):8069-8075. PubMed ID: 28265617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]