These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35040864)

  • 1. Correction: Reversible electrowetting transitions on superhydrophobic surfaces.
    Vanzo D; Luzar A; Bratko D
    Phys Chem Chem Phys; 2022 Jan; 24(4):2666. PubMed ID: 35040864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrowetting-induced dewetting transitions on superhydrophobic surfaces.
    Kumari N; Garimella SV
    Langmuir; 2011 Sep; 27(17):10342-6. PubMed ID: 21770408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction: Insight at the atomic scale of corrosion inhibition: DFT study of 8-hydroxyquinoline on oxidized aluminum surfaces.
    Chiter F; Costa D; Pébère N; Marcus P; Lacaze-Dufaure C
    Phys Chem Chem Phys; 2023 Feb; 25(7):5886. PubMed ID: 36728186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to Achieve Reversible Electrowetting on Superhydrophobic Surfaces.
    Kavousanakis ME; Chamakos NT; Ellinas K; Tserepi A; Gogolides E; Papathanasiou AG
    Langmuir; 2018 Apr; 34(14):4173-4179. PubMed ID: 29558803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible electrowetting on superhydrophobic double-nanotextured surfaces.
    Lapierre F; Thomy V; Coffinier Y; Blossey R; Boukherroub R
    Langmuir; 2009 Jun; 25(11):6551-8. PubMed ID: 19402607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical switching of wetting states on superhydrophobic surfaces: a route towards reversible Cassie-to-Wenzel transitions.
    Manukyan G; Oh JM; van den Ende D; Lammertink RG; Mugele F
    Phys Rev Lett; 2011 Jan; 106(1):014501. PubMed ID: 21231746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible electrowetting transitions on superhydrophobic surfaces.
    Vanzo D; Luzar A; Bratko D
    Phys Chem Chem Phys; 2021 Dec; 23(47):27005-27013. PubMed ID: 34846052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible electrowetting on superhydrophobic silicon nanowires.
    Verplanck N; Galopin E; Camart JC; Thomy V; Coffinier Y; Boukherroub R
    Nano Lett; 2007 Mar; 7(3):813-7. PubMed ID: 17302459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermediate States of Wetting on Hierarchical Superhydrophobic Surfaces.
    Rofman B; Dehe S; Frumkin V; Hardt S; Bercovici M
    Langmuir; 2020 May; 36(20):5517-5523. PubMed ID: 32337996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible electrowetting of vertically aligned superhydrophobic carbon nanofibers.
    Dhindsa MS; Smith NR; Heikenfeld J; Rack PD; Fowlkes JD; Doktycz MJ; Melechko AV; Simpson ML
    Langmuir; 2006 Oct; 22(21):9030-4. PubMed ID: 17014150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Re-entrant Cavities Enhance Resilience to the Cassie-to-Wenzel State Transition on Superhydrophobic Surfaces during Electrowetting.
    Roy R; Weibel JA; Garimella SV
    Langmuir; 2018 Oct; 34(43):12787-12793. PubMed ID: 30277779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correction: Comment on "Isomerization of the methoxy radical revisited: the impact of water dimers" by B. Bandyopadhyay et al., Phys. Chem. Chem. Phys., 2016, 18, 27728 and "Isomerization of methoxy radical in the troposphere: competition between acidic, neutral and basic catalysts" by P. Kumar, B. Bandyopadhyay et al., Phys. Chem. Chem. Phys., 2017, 19, 278.
    Dibble TS
    Phys Chem Chem Phys; 2018 May; 20(20):14264. PubMed ID: 29740647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extreme resistance of superhydrophobic surfaces to impalement: reversible electrowetting related to the impacting/bouncing drop test.
    Brunet P; Lapierre F; Thomy V; Coffinier Y; Boukherroub R
    Langmuir; 2008 Oct; 24(19):11203-8. PubMed ID: 18729486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully reversible transition from Wenzel to Cassie-Baxter states on corrugated superhydrophobic surfaces.
    Vrancken RJ; Kusumaatmaja H; Hermans K; Prenen AM; Pierre-Louis O; Bastiaansen CW; Broer DJ
    Langmuir; 2010 Mar; 26(5):3335-41. PubMed ID: 19928892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correction: Quantum and semiclassical studies of nonadiabatic electronic transitions between N(
    Lu D; Galvão BRL; Varandas AJC; Guo H
    Phys Chem Chem Phys; 2024 Apr; 26(16):12893. PubMed ID: 38623930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correction: Crystalline matrix-activated spin-forbidden transitions of engineered organic crystals.
    Zhang H; Ke L; Nie Y; Tu Z; Wang J; Saikin SK; Bi H; Wang Y
    Phys Chem Chem Phys; 2023 May; 25(19):13792. PubMed ID: 37158272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correction: Calcium carbonate crystallisation at charged graphite surfaces.
    Ravenhill ER; Adobes-Vidal M; Unwin PR
    Chem Commun (Camb); 2017 Nov; 53(96):12978. PubMed ID: 29165445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrowetting and droplet impalement experiments on superhydrophobic multiscale structures.
    Lapierre F; Brunet P; Coffinier Y; Thomy V; Blossey R; Boukherroub R
    Faraday Discuss; 2010; 146():125-139; discussion 195-215, 395-403. PubMed ID: 21043418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel reversibly switchable wettability of superhydrophobic-superhydrophilic surfaces induced by charge injection and heating.
    Ye X; Hou J; Cai D
    Beilstein J Nanotechnol; 2019; 10():840-847. PubMed ID: 31019871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrowetting control of Cassie-to-Wenzel transitions in superhydrophobic carbon nanotube-based nanocomposites.
    Han Z; Tay B; Tan C; Shakerzadeh M; Ostrikov KK
    ACS Nano; 2009 Oct; 3(10):3031-6. PubMed ID: 19754132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.