These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 35040960)

  • 21. Level locomotion in wood ants: evidence for grounded running.
    Reinhardt L; Blickhan R
    J Exp Biol; 2014 Jul; 217(Pt 13):2358-70. PubMed ID: 24744414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ground reaction forces intersect above the center of mass even when walking down visible and camouflaged curbs.
    Vielemeyer J; Grießbach E; Müller R
    J Exp Biol; 2019 Jul; 222(Pt 14):. PubMed ID: 31266780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From template to anchors: transfer of virtual pendulum posture control balance template to adaptive neuromuscular gait model increases walking stability.
    Davoodi A; Mohseni O; Seyfarth A; Sharbafi MA
    R Soc Open Sci; 2019 Mar; 6(3):181911. PubMed ID: 31032044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Balance Recoverability and Control of Bipedal Walkers With Foot Slip.
    Mihalec M; Trkov M; Yi J
    J Biomech Eng; 2022 May; 144(5):. PubMed ID: 34817050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Body and tail-assisted pitch control facilitates bipedal locomotion in Australian agamid lizards.
    Clemente CJ; Wu NC
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257922
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The biomechanics of skipping gaits: a third locomotion paradigm?
    Minetti AE
    Proc Biol Sci; 1998 Jul; 265(1402):1227-35. PubMed ID: 9699315
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Whole body frontal plane mechanics across walking, running, and sprinting in young and older adults.
    Kulmala JP; Korhonen MT; Kuitunen S; Suominen H; Heinonen A; Mikkola A; Avela J
    Scand J Med Sci Sports; 2017 Sep; 27(9):956-963. PubMed ID: 27292352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanics of a rapid running insect: two-, four- and six-legged locomotion.
    Full RJ; Tu MS
    J Exp Biol; 1991 Mar; 156():215-31. PubMed ID: 2051129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling.
    Smith AJJ; Lemaire ED; Nantel J
    PLoS One; 2018; 13(9):e0203934. PubMed ID: 30222772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics and stability of insect locomotion: a hexapedal model for horizontal plane motions.
    Seipel JE; Holmes PJ; Full RJ
    Biol Cybern; 2004 Aug; 91(2):76-90. PubMed ID: 15322851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical power output during running accelerations in wild turkeys.
    Roberts TJ; Scales JA
    J Exp Biol; 2002 May; 205(Pt 10):1485-94. PubMed ID: 11976359
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ability of sagittal kinematic variables to estimate ground reaction forces and joint kinetics in running.
    Wille CM; Lenhart RL; Wang S; Thelen DG; Heiderscheit BC
    J Orthop Sports Phys Ther; 2014 Oct; 44(10):825-30. PubMed ID: 25156183
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of ground reaction forces during gait based on kinematics and a neural network model.
    Oh SE; Choi A; Mun JH
    J Biomech; 2013 Sep; 46(14):2372-80. PubMed ID: 23962528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In search of the pitching momentum that enables some lizards to sustain bipedal running at constant speeds.
    Van Wassenbergh S; Aerts P
    J R Soc Interface; 2013 Jul; 10(84):20130241. PubMed ID: 23658116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic stability in cerebral palsy during walking and running: Predictors and regulation strategies.
    Rethwilm R; Böhm H; Haase M; Perchthaler D; Dussa CU; Federolf P
    Gait Posture; 2021 Feb; 84():329-334. PubMed ID: 33445142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Posture Control Associated with Quadrupedal and Bipedal Gait in Japanese Monkeys (Macaca fuscata)].
    Nakajima K; Mochizuki K; Higurashi Y
    Brain Nerve; 2022 Sep; 74(9):1095-1100. PubMed ID: 36065670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Virtual Point Control for Step-Down Perturbations and Downhill Slopes in Bipedal Running.
    Drama Ö; Badri-Spröwitz A
    Front Bioeng Biotechnol; 2020; 8():586534. PubMed ID: 33392164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trunk movements in human locomotion.
    Thorstensson A; Nilsson J; Carlson H; Zomlefer MR
    Acta Physiol Scand; 1984 May; 121(1):9-22. PubMed ID: 6741583
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Whole-body angular momentum during stair ascent and descent.
    Silverman AK; Neptune RR; Sinitski EH; Wilken JM
    Gait Posture; 2014 Apr; 39(4):1109-14. PubMed ID: 24636222
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Locomotory behaviour of the intertidal marble crab (Pachygrapsus marmoratus) supports the underwater spring-loaded inverted pendulum as a fundamental model for punting in animals.
    Chellapurath M; Stefanni S; Fiorito G; Sabatini AM; Laschi C; Calisti M
    Bioinspir Biomim; 2020 Jul; 15(5):055004. PubMed ID: 32454476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.