These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35040992)

  • 1. Inhibition of sulfate-reducing bacteria with formate.
    Voskuhl L; Brusilova D; Brauer VS; Meckenstock RU
    FEMS Microbiol Ecol; 2022 Feb; 98(1):. PubMed ID: 35040992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Desulfovibrio vulgaris Growth Coupled to Formate-Driven H2 Production.
    Martins M; Mourato C; Pereira IA
    Environ Sci Technol; 2015 Dec; 49(24):14655-62. PubMed ID: 26579558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transfer pathways of formate-driven H2 production in Desulfovibrio.
    Martins M; Mourato C; Morais-Silva FO; Rodrigues-Pousada C; Voordouw G; Wall JD; Pereira IA
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8135-46. PubMed ID: 27270746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Sulfate Reduction and Cell Division by Desulfovibrio desulfuricans Coated in Palladium Metal.
    Barnes RJ; Voegtlin SP; Naik SR; Gomes R; Hubert CRJ; Larter SR; Bryant SL
    Appl Environ Microbiol; 2022 Jun; 88(12):e0058022. PubMed ID: 35638843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Function of formate dehydrogenases in Desulfovibrio vulgaris Hildenborough energy metabolism.
    da Silva SM; Voordouw J; Leitão C; Martins M; Voordouw G; Pereira IAC
    Microbiology (Reading); 2013 Aug; 159(Pt 8):1760-1769. PubMed ID: 23728629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the substrate on Ni inhibition in biological sulfate reduction.
    Liu Y; Vaughan J; Southam G; Serrano A; Gao H; Palfreyman R; Marcellin E; Villa-Gomez DK
    J Environ Manage; 2022 Aug; 316():115216. PubMed ID: 35550960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria.
    Wu WM; Hickey RF; Zeikus JG
    Appl Environ Microbiol; 1991 Dec; 57(12):3438-49. PubMed ID: 1785921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductive precipitation of sulfate and soluble Fe(III) by Desulfovibrio vulgaris: Electron donor regulates intracellular electron flow and nano-FeS crystallization.
    Zhou C; Zhou Y; Rittmann BE
    Water Res; 2017 Aug; 119():91-101. PubMed ID: 28436827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haloalkaliphilic denitrifiers-dependent sulfate-reducing bacteria thrive in nitrate-enriched environments.
    Zhou J; Xing J
    Water Res; 2021 Aug; 201():117354. PubMed ID: 34157573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7.
    Kushkevych I; Dordević D; Vítězová M
    Arch Microbiol; 2019 Apr; 201(3):389-397. PubMed ID: 30707247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Densely Populated Water Droplets in Heavy-Oil Seeps.
    Pannekens M; Voskuhl L; Meier A; Müller H; Haque S; Frösler J; Brauer VS; Meckenstock RU
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria.
    Brondino CD; Passeggi MC; Caldeira J; Almendra MJ; Feio MJ; Moura JJ; Moura I
    J Biol Inorg Chem; 2004 Mar; 9(2):145-51. PubMed ID: 14669076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A continuous system for biocatalytic hydrogenation of CO
    Mourato C; Martins M; da Silva SM; Pereira IAC
    Bioresour Technol; 2017 Jul; 235():149-156. PubMed ID: 28365342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria.
    Greene EA; Hubert C; Nemati M; Jenneman GE; Voordouw G
    Environ Microbiol; 2003 Jul; 5(7):607-17. PubMed ID: 12823193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome and catabolic subproteomes of the marine, nutritionally versatile, sulfate-reducing bacterium Desulfococcus multivorans DSM 2059.
    Dörries M; Wöhlbrand L; Kube M; Reinhardt R; Rabus R
    BMC Genomics; 2016 Nov; 17(1):918. PubMed ID: 27846794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyhydroxyalkanoate (PHA) accumulation in sulfate-reducing bacteria and identification of a class III PHA synthase (PhaEC) in Desulfococcus multivorans.
    Hai T; Lange D; Rabus R; Steinbüchel A
    Appl Environ Microbiol; 2004 Aug; 70(8):4440-8. PubMed ID: 15294771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of molybdate by sulfate-reducing bacteria.
    Biswas KC; Woodards NA; Xu H; Barton LL
    Biometals; 2009 Feb; 22(1):131-9. PubMed ID: 19130259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling reduction of uranium U(VI) under variable sulfate concentrations by sulfate-reducing bacteria.
    Spear JR; Figueroa LA; Honeyman BD
    Appl Environ Microbiol; 2000 Sep; 66(9):3711-21. PubMed ID: 10966381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of sulfate-reducing bacteria from the terrestrial deep subsurface and description of Desulfovibrio cavernae sp. nov.
    Sass H; Cypionka H
    Syst Appl Microbiol; 2004 Sep; 27(5):541-8. PubMed ID: 15490555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative proteome analysis of propionate degradation by Syntrophobacter fumaroxidans in pure culture and in coculture with methanogens.
    Sedano-Núñez VT; Boeren S; Stams AJM; Plugge CM
    Environ Microbiol; 2018 May; 20(5):1842-1856. PubMed ID: 29611893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.