These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 35041074)

  • 1. Methods for statistical fine-mapping and their applications to auto-immune diseases.
    Wang QS; Huang H
    Semin Immunopathol; 2022 Jan; 44(1):101-113. PubMed ID: 35041074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A practical view of fine-mapping and gene prioritization in the post-genome-wide association era.
    Broekema RV; Bakker OB; Jonkers IH
    Open Biol; 2020 Jan; 10(1):190221. PubMed ID: 31937202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SparsePro: An efficient fine-mapping method integrating summary statistics and functional annotations.
    Zhang W; Najafabadi H; Li Y
    PLoS Genet; 2023 Dec; 19(12):e1011104. PubMed ID: 38153934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian analysis of genome-wide inflammatory bowel disease data sets reveals new risk loci.
    Zhang Y; Tian L; Sleiman P; Ghosh S; Hakonarson H;
    Eur J Hum Genet; 2018 Feb; 26(2):265-274. PubMed ID: 29203833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From GWAS to Gene: Transcriptome-Wide Association Studies and Other Methods to Functionally Understand GWAS Discoveries.
    Li B; Ritchie MD
    Front Genet; 2021; 12():713230. PubMed ID: 34659337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A catalog of GWAS fine-mapping efforts in autoimmune disease.
    Caliskan M; Brown CD; Maranville JC
    Am J Hum Genet; 2021 Apr; 108(4):549-563. PubMed ID: 33798443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of potential genetic causal variants for obesity-related traits using statistical fine mapping.
    Gong R; Greenbaum J; Lin X; Du Y; Su KJ; Gong Y; Shen J; Deng HW
    Mol Genet Genomics; 2023 Nov; 298(6):1309-1319. PubMed ID: 37498361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the coverage of credible sets in Bayesian genetic fine-mapping.
    Hutchinson A; Watson H; Wallace C
    PLoS Comput Biol; 2020 Apr; 16(4):e1007829. PubMed ID: 32282791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GWAS and fine-mapping of livability and six disease traits in Holstein cattle.
    Freebern E; Santos DJA; Fang L; Jiang J; Parker Gaddis KL; Liu GE; VanRaden PM; Maltecca C; Cole JB; Ma L
    BMC Genomics; 2020 Jan; 21(1):41. PubMed ID: 31931710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The flashfm approach for fine-mapping multiple quantitative traits.
    Hernández N; Soenksen J; Newcombe P; Sandhu M; Barroso I; Wallace C; Asimit JL
    Nat Commun; 2021 Oct; 12(1):6147. PubMed ID: 34686674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionally informed fine-mapping and polygenic localization of complex trait heritability.
    Weissbrod O; Hormozdiari F; Benner C; Cui R; Ulirsch J; Gazal S; Schoech AP; van de Geijn B; Reshef Y; Márquez-Luna C; O'Connor L; Pirinen M; Finucane HK; Price AL
    Nat Genet; 2020 Dec; 52(12):1355-1363. PubMed ID: 33199916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data.
    Wu Y; Zheng Z; Visscher PM; Yang J
    Genome Biol; 2017 May; 18(1):86. PubMed ID: 28506277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A large-scale transcriptome-wide association study (TWAS) of 10 blood cell phenotypes reveals complexities of TWAS fine-mapping.
    Tapia AL; Rowland BT; Rosen JD; Preuss M; Young K; Graff M; Choquet H; Couper DJ; Buyske S; Bien SA; Jorgenson E; Kooperberg C; Loos RJF; Morrison AC; North KE; Yu B; Reiner AP; Li Y; Raffield LM
    Genet Epidemiol; 2022 Feb; 46(1):3-16. PubMed ID: 34779012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved methods for multi-trait fine mapping of pleiotropic risk loci.
    Kichaev G; Roytman M; Johnson R; Eskin E; Lindström S; Kraft P; Pasaniuc B
    Bioinformatics; 2017 Jan; 33(2):248-255. PubMed ID: 27663501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the Performance of Fine-Mapping Strategies at Common Variant GWAS Loci.
    van de Bunt M; Cortes A; ; Brown MA; Morris AP; McCarthy MI
    PLoS Genet; 2015; 11(9):e1005535. PubMed ID: 26406328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine mapping with epigenetic information and 3D structure.
    Orozco G
    Semin Immunopathol; 2022 Jan; 44(1):115-125. PubMed ID: 35022890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fine-mapping study of central obesity loci incorporating functional annotation and imputation.
    Zhang X; Cupples LA; Liu CT
    Eur J Hum Genet; 2018 Sep; 26(9):1369-1377. PubMed ID: 29967334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies for fine-mapping complex traits.
    Spain SL; Barrett JC
    Hum Mol Genet; 2015 Oct; 24(R1):R111-9. PubMed ID: 26157023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Multi-omic Integrative Scheme Characterizes Tissues of Action at Loci Associated with Type 2 Diabetes.
    Torres JM; Abdalla M; Payne A; Fernandez-Tajes J; Thurner M; Nylander V; Gloyn AL; Mahajan A; McCarthy MI
    Am J Hum Genet; 2020 Dec; 107(6):1011-1028. PubMed ID: 33186544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery and fine-mapping of kidney function loci in first genome-wide association study in Africans.
    Fatumo S; Chikowore T; Kalyesubula R; Nsubuga RN; Asiki G; Nashiru O; Seeley J; Crampin AC; Nitsch D; Smeeth L; Kaleebu P; Burgess S; Nyirenda M; Franceschini N; Morris AP; Tomlinson L; Newton R
    Hum Mol Genet; 2021 Jul; 30(16):1559-1568. PubMed ID: 33783510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.