These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 3504173)

  • 41. Amelotin Gene Structure and Expression during Enamel Formation in the Opossum Monodelphis domestica.
    Gasse B; Liu X; Corre E; Sire JY
    PLoS One; 2015; 10(7):e0133314. PubMed ID: 26186457
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exclusion of all three calbindins from a calcium-ferry role in rat enamel cells.
    Hubbard MJ; McHugh NJ; Mangum JE
    Eur J Oral Sci; 2011 Dec; 119 Suppl 1():112-9. PubMed ID: 22243236
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Short exposure to high levels of fluoride induces stage-dependent structural changes in ameloblasts and enamel mineralization.
    Lyaruu DM; Bervoets TJ; Bronckers AL
    Eur J Oral Sci; 2006 May; 114 Suppl 1():111-5; discussion 127-9, 380. PubMed ID: 16674671
    [TBL] [Abstract][Full Text] [Related]  

  • 44. "Proenamel leads to enamel leads to polypeptides": a concept.
    Chrispens J; Weliky B; Bringas P; Slavkin H
    J Dent Res; 1979 Mar; 58(Spec Issue B):988-90. PubMed ID: 283142
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A comparative study of disturbed mineralization of rat incisor enamel induced by strontium and fluoride administration.
    Suga S; Aoki H; Yamashita Y; Tsuno M; Ogawa M
    Adv Dent Res; 1987 Dec; 1(2):339-55. PubMed ID: 3504185
    [No Abstract]   [Full Text] [Related]  

  • 46. Role of the enamel organ in limiting fluoride uptake during the maturation phase of enamel development.
    Bawden JW; Deaton TG; Crenshaw MA
    J Dent Res; 1982 Mar; 61(3):506-9. PubMed ID: 6949953
    [No Abstract]   [Full Text] [Related]  

  • 47. Enamel formation and amelogenesis imperfecta.
    Hu JC; Chun YH; Al Hazzazzi T; Simmer JP
    Cells Tissues Organs; 2007; 186(1):78-85. PubMed ID: 17627121
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Time-related changes in the distribution of 45Ca in the developing enamel of rat incisors as revealed by radioautography.
    Takano Y; Hanawa M; Yamamoto T; Domon T; Fujinami H; Hanaizumi Y; Wakita M
    J Biol Buccale; 1990 Jun; 18(2):135-47. PubMed ID: 2211580
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effective fluoride concentrations to promote apatite mineralization at the enamel surface.
    Feagin FF; Jeansonne BG
    Ala J Med Sci; 1973 Jan; 10(1):107-14. PubMed ID: 4703029
    [No Abstract]   [Full Text] [Related]  

  • 50. Calcium release from powdered enamel and synthetic apatite after pretreatment with various low molecular weight organic acids.
    Voegel JC; Gillmeth S; Frank RM
    Caries Res; 1983; 17(3):212-20. PubMed ID: 6573962
    [No Abstract]   [Full Text] [Related]  

  • 51. [The penetration of Ca-ions in dental enamel during its remineralization].
    Knappwost A; Meyer RU
    Naturwissenschaften; 1978 Aug; 65(8):436. PubMed ID: 714175
    [No Abstract]   [Full Text] [Related]  

  • 52. Phosphate diffusion in whole bovine enamel at pH 7 II. Temperature, time and concentration dependency.
    de Rooij JF; Arends J
    Caries Res; 1981; 15(5):353-62. PubMed ID: 6942918
    [No Abstract]   [Full Text] [Related]  

  • 53. The gradient of mineralization in developing enamel.
    CRABB HS; DARLING AI
    Arch Oral Biol; 1960 Oct; 2():308-18. PubMed ID: 13696156
    [No Abstract]   [Full Text] [Related]  

  • 54. Carbon 14 tryptophan metabolism in developing rat molars.
    Slavkin HC; Tetreault CE; Bavetta LA
    J Dent Res; 1968; 47(2):272-4. PubMed ID: 5238760
    [No Abstract]   [Full Text] [Related]  

  • 55. New artefacts for old: an alterative method of preparing hard and soft tissue interfaces of developing enamel.
    Fearnhead RW; Pang M; Mok N; Kawasaki K
    Adv Dent Res; 1987 Dec; 1(2):366-70. PubMed ID: 3332772
    [No Abstract]   [Full Text] [Related]  

  • 56. [Natural amelogenesis and rationale for enamel regeneration by means of robotic bioprinting of tissues in situ].
    Malyshev IY; Runova GS; Poduraev YV; Mironov VA
    Stomatologiia (Mosk); 2018; 97(2):58-64. PubMed ID: 29795109
    [No Abstract]   [Full Text] [Related]  

  • 57. [Some considerations of defective amelogenesis].
    MEZL Z
    Tijdschr Tandheelkd; 1951 Jul; 58(7):614-8. PubMed ID: 14855469
    [No Abstract]   [Full Text] [Related]  

  • 58. Meeting report: a hard look at the state of enamel research.
    Klein OD; Duverger O; Shaw W; Lacruz RS; Joester D; Moradian-Oldak J; Pugach MK; Wright JT; Millar SE; Kulkarni AB; Bartlett JD; Diekwisch TG; DenBesten P; Simmer JP
    Int J Oral Sci; 2017 Nov; 9(11):e3. PubMed ID: 29165423
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The isolation and characterization of phosphopeptides from developing enamel.
    Glimcher MJ
    Calcif Tissue Res; 1970; ():Suppl:146. PubMed ID: 5448536
    [No Abstract]   [Full Text] [Related]  

  • 60. Studies on the developing enameloid of a fish (Hoplognathus fasciatus). I. Mineralization pattern of enameloid matrix.
    Isokawa S; Tsubouchi M; Aoki K; Imai M; Kawai A
    J Nihon Univ Sch Dent; 1970 Jun; 12(2):43-9. PubMed ID: 5273320
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.