These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 35041773)
1. Elucidating Two Distinct Pathways for Electrocatalytic Hydrogen Production Using Co Brown J; Ovens J; Richeson D ChemSusChem; 2022 Mar; 15(5):e202102542. PubMed ID: 35041773 [TBL] [Abstract][Full Text] [Related]
3. Electro- and Photocatalytic Generation of H Rao GK; Pell W; Gabidullin B; Korobkov I; Richeson D Chemistry; 2017 Nov; 23(66):16763-16767. PubMed ID: 29044839 [TBL] [Abstract][Full Text] [Related]
4. Electrocatalytic reduction of CO2 with palladium bis-N-heterocyclic carbene pincer complexes. Therrien JA; Wolf MO; Patrick BO Inorg Chem; 2014 Dec; 53(24):12962-72. PubMed ID: 25337973 [TBL] [Abstract][Full Text] [Related]
5. Electrocatalytic Reduction of CO Norouziyanlakvan S; Berro P; Rao GK; Gabidullin B; Richeson D Chemistry; 2024 Apr; 30(21):e202303147. PubMed ID: 38224468 [TBL] [Abstract][Full Text] [Related]
7. Electrocatalytic proton reduction by a dicobalt tetrakis-Schiff base macrocycle in nonaqueous electrolyte. Kal S; Filatov AS; Dinolfo PH Inorg Chem; 2014 Jul; 53(14):7137-45. PubMed ID: 24963755 [TBL] [Abstract][Full Text] [Related]
8. Photo- and electrocatalytic H2 production by new first-row transition-metal complexes based on an aminopyridine pentadentate ligand. Call A; Codolà Z; Acuña-Parés F; Lloret-Fillol J Chemistry; 2014 May; 20(20):6171-83. PubMed ID: 24692261 [TBL] [Abstract][Full Text] [Related]
9. Organometallic Ni pincer complexes for the electrocatalytic production of hydrogen. Luca OR; Blakemore JD; Konezny SJ; Praetorius JM; Schmeier TJ; Hunsinger GB; Batista VS; Brudvig GW; Hazari N; Crabtree RH Inorg Chem; 2012 Aug; 51(16):8704-9. PubMed ID: 22849660 [TBL] [Abstract][Full Text] [Related]
10. Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. Hu X; Brunschwig BS; Peters JC J Am Chem Soc; 2007 Jul; 129(29):8988-98. PubMed ID: 17602556 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of electrocatalytic hydrogen production by a di-iron model of iron-iron hydrogenase: a density functional theory study of proton dissociation constants and electrode reduction potentials. Surawatanawong P; Tye JW; Darensbourg MY; Hall MB Dalton Trans; 2010 Mar; 39(12):3093-104. PubMed ID: 20221544 [TBL] [Abstract][Full Text] [Related]
12. Mononuclear nickel(II) dithiolate complexes with chelating diphosphines: Insight into protonation and electrochemical proton reduction. Gu XL; Li JR; Li QL; Guo Y; Jing XB; Chen ZB; Zhao PH J Inorg Biochem; 2021 Jun; 219():111449. PubMed ID: 33798827 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of a Redox-Active NNP-Type Pincer Ligand and Its Application to Electrocatalytic CO Talukdar K; Issa A; Jurss JW Front Chem; 2019; 7():330. PubMed ID: 31165057 [TBL] [Abstract][Full Text] [Related]
14. The ferrocene effect: enhanced electrocatalytic hydrogen production using meso-tetraferrocenyl porphyrin palladium(II) and copper(II) complexes. Sirbu D; Turta C; Gibson EA; Benniston AC Dalton Trans; 2015 Sep; 44(33):14646-55. PubMed ID: 26213204 [TBL] [Abstract][Full Text] [Related]
15. Theoretical analysis of mechanistic pathways for hydrogen evolution catalyzed by cobaloximes. Solis BH; Hammes-Schiffer S Inorg Chem; 2011 Nov; 50(21):11252-62. PubMed ID: 21942543 [TBL] [Abstract][Full Text] [Related]