These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35041773)

  • 1. Elucidating Two Distinct Pathways for Electrocatalytic Hydrogen Production Using Co
    Brown J; Ovens J; Richeson D
    ChemSusChem; 2022 Mar; 15(5):e202102542. PubMed ID: 35041773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocatalytic H
    Norouziyanlakvan S; Rao GK; Ovens J; Gabidullin B; Richeson D
    Chemistry; 2021 Sep; 27(54):13518-13522. PubMed ID: 34415632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electro- and Photocatalytic Generation of H
    Rao GK; Pell W; Gabidullin B; Korobkov I; Richeson D
    Chemistry; 2017 Nov; 23(66):16763-16767. PubMed ID: 29044839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrocatalytic reduction of CO2 with palladium bis-N-heterocyclic carbene pincer complexes.
    Therrien JA; Wolf MO; Patrick BO
    Inorg Chem; 2014 Dec; 53(24):12962-72. PubMed ID: 25337973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocatalytic Reduction of CO
    Norouziyanlakvan S; Berro P; Rao GK; Gabidullin B; Richeson D
    Chemistry; 2024 Apr; 30(21):e202303147. PubMed ID: 38224468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocatalytic Hydrogen Generation by Ni-PN
    Chatterjee S; Dutta I; Dereli B; Chakraborty P; Peramaiah K; Gupta N; Cavallo L; Huang KW
    Chem Asian J; 2024 Dec; 19(23):e202400690. PubMed ID: 39183179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocatalytic proton reduction by a dicobalt tetrakis-Schiff base macrocycle in nonaqueous electrolyte.
    Kal S; Filatov AS; Dinolfo PH
    Inorg Chem; 2014 Jul; 53(14):7137-45. PubMed ID: 24963755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photo- and electrocatalytic H2 production by new first-row transition-metal complexes based on an aminopyridine pentadentate ligand.
    Call A; Codolà Z; Acuña-Parés F; Lloret-Fillol J
    Chemistry; 2014 May; 20(20):6171-83. PubMed ID: 24692261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organometallic Ni pincer complexes for the electrocatalytic production of hydrogen.
    Luca OR; Blakemore JD; Konezny SJ; Praetorius JM; Schmeier TJ; Hunsinger GB; Batista VS; Brudvig GW; Hazari N; Crabtree RH
    Inorg Chem; 2012 Aug; 51(16):8704-9. PubMed ID: 22849660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes.
    Hu X; Brunschwig BS; Peters JC
    J Am Chem Soc; 2007 Jul; 129(29):8988-98. PubMed ID: 17602556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of electrocatalytic hydrogen production by a di-iron model of iron-iron hydrogenase: a density functional theory study of proton dissociation constants and electrode reduction potentials.
    Surawatanawong P; Tye JW; Darensbourg MY; Hall MB
    Dalton Trans; 2010 Mar; 39(12):3093-104. PubMed ID: 20221544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mononuclear nickel(II) dithiolate complexes with chelating diphosphines: Insight into protonation and electrochemical proton reduction.
    Gu XL; Li JR; Li QL; Guo Y; Jing XB; Chen ZB; Zhao PH
    J Inorg Biochem; 2021 Jun; 219():111449. PubMed ID: 33798827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of a Redox-Active NNP-Type Pincer Ligand and Its Application to Electrocatalytic CO
    Talukdar K; Issa A; Jurss JW
    Front Chem; 2019; 7():330. PubMed ID: 31165057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ferrocene effect: enhanced electrocatalytic hydrogen production using meso-tetraferrocenyl porphyrin palladium(II) and copper(II) complexes.
    Sirbu D; Turta C; Gibson EA; Benniston AC
    Dalton Trans; 2015 Sep; 44(33):14646-55. PubMed ID: 26213204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical analysis of mechanistic pathways for hydrogen evolution catalyzed by cobaloximes.
    Solis BH; Hammes-Schiffer S
    Inorg Chem; 2011 Nov; 50(21):11252-62. PubMed ID: 21942543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping free energy regimes in electrocatalytic reductions to screen transition metal-based catalysts.
    Ramakrishnan S; Moretti RA; Chidsey CED
    Chem Sci; 2019 Aug; 10(32):7649-7658. PubMed ID: 31588316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocatalytic Proton Reduction by a Cobalt(III) Hydride Complex with Phosphinopyridine PN Ligands.
    Walaijai K; Cavill SA; Whitwood AC; Douthwaite RE; Perutz RN
    Inorg Chem; 2020 Dec; 59(24):18055-18067. PubMed ID: 33275426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turning on the Protonation-First Pathway for Electrocatalytic CO
    Ngo KT; McKinnon M; Mahanti B; Narayanan R; Grills DC; Ertem MZ; Rochford J
    J Am Chem Soc; 2017 Feb; 139(7):2604-2618. PubMed ID: 28118005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-Assisted Metal-Centered Electrocatalytic Hydrogen Evolution upon Reduction of a Bis(thiosemicarbazonato)Ni(II) Complex.
    Jain R; Mamun AA; Buchanan RM; Kozlowski PM; Grapperhaus CA
    Inorg Chem; 2018 Nov; 57(21):13486-13493. PubMed ID: 30351080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical Detection of Transient Cobalt Hydride Intermediates of Electrocatalytic Hydrogen Production.
    Wiedner ES; Bullock RM
    J Am Chem Soc; 2016 Jul; 138(26):8309-18. PubMed ID: 27300721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.