BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35041790)

  • 1. Chemically Accelerated Stabilization of a Cellulose-Lignin Precursor as a Route to High Yield Carbon Fiber Production.
    Le ND; Trogen M; Varley RJ; Hummel M; Byrne N
    Biomacromolecules; 2022 Mar; 23(3):839-846. PubMed ID: 35041790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disassociated molecular orientation distributions of a composite cellulose-lignin carbon fiber precursor: A study by rotor synchronized NMR spectroscopy and X-ray scattering.
    Svenningsson L; Bengtsson J; Jedvert K; Schlemmer W; Theliander H; Evenäs L
    Carbohydr Polym; 2021 Feb; 254():117293. PubMed ID: 33357862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variation in the hierarchical structure of lignin-blended cellulose precursor fibers.
    Liu J; Bengtsson J; Yu S; Burghammer M; Jedvert K
    Int J Biol Macromol; 2023 Jan; 225():1555-1561. PubMed ID: 36427621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel partially biobased PAN-lignin blend as a potential carbon fiber precursor.
    Seydibeyoğlu MÖ
    J Biomed Biotechnol; 2012; 2012():598324. PubMed ID: 23118513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced stabilization of cellulose-lignin hybrid filaments for carbon fiber production.
    Byrne N; De Silva R; Ma Y; Sixta H; Hummel M
    Cellulose (Lond); 2018; 25(1):723-733. PubMed ID: 31997858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose-lignin composite fibers as precursors for carbon fibers: Part 2 - The impact of precursor properties on carbon fibers.
    Le ND; Trogen M; Ma Y; Varley RJ; Hummel M; Byrne N
    Carbohydr Polym; 2020 Dec; 250():116918. PubMed ID: 33049890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Lignin-Cellulose-Based Carbon Nanofibers as High-Performance Supercapacitors.
    Cao Q; Zhu M; Chen J; Song Y; Li Y; Zhou J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1210-1221. PubMed ID: 31845573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of carbons derived from cellulose and lignin and their oxidative behavior.
    Xie X; Goodell B; Zhang D; Nagle DC; Qian Y; Peterson ML; Jellison J
    Bioresour Technol; 2009 Mar; 100(5):1797-802. PubMed ID: 19027291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of potential cellulose fiber from Luffa vine: A study on physicochemical and structural properties.
    Cheng D; Weng B; Chen Y; Zhai S; Wang C; Xu R; Guo J; Lv Y; Shi L; Guo Y
    Int J Biol Macromol; 2020 Dec; 164():2247-2257. PubMed ID: 32798545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: comparison of N₂ and CO₂ atmosphere.
    Zhang J; Chen T; Wu J; Wu J
    Bioresour Technol; 2014 Aug; 166():87-95. PubMed ID: 24907567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the carbon-sequestering abilities of pineapple leaf residue chars produced by controlled combustion and by field burning.
    Leng LY; Husni MH; Samsuri AW
    Bioresour Technol; 2011 Nov; 102(22):10759-62. PubMed ID: 21958525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the effects of isolated lignin on enzymatic hydrolysis of cellulose.
    Zhang H; Wu S; Xie J
    Enzyme Microb Technol; 2017 Jun; 101():44-50. PubMed ID: 28433190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials.
    Pereira PHF; Ornaghi HL; Arantes V; Cioffi MOH
    Carbohydr Res; 2021 Jan; 499():108227. PubMed ID: 33388571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of ozonolysis time during sugarcane pretreatment: Effects on the fiber and enzymatic saccharification.
    Perrone OM; Rossi JS; Moretti MMS; Nunes CDCC; Bordignon SE; Gomes E; Da-Silva R; Boscolo M
    Bioresour Technol; 2017 Jan; 224():733-737. PubMed ID: 27889354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid analysis of purified cellulose extracted from perennial ryegrass (Lolium perenne) by instrumental analysis.
    Lyons GA; McRoberts C; Sharma HS; McCormack R; Carmichael E; McCall RD
    Bioresour Technol; 2013 Oct; 146():184-191. PubMed ID: 23933026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films.
    Shankar S; Reddy JP; Rhim JW
    Int J Biol Macromol; 2015 Nov; 81():267-73. PubMed ID: 26271435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Strength Composite Fibers from Cellulose-Lignin Blends Regenerated from Ionic Liquid Solution.
    Ma Y; Asaadi S; Johansson LS; Ahvenainen P; Reza M; Alekhina M; Rautkari L; Michud A; Hauru L; Hummel M; Sixta H
    ChemSusChem; 2015 Dec; 8(23):4030-9. PubMed ID: 26542190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Keratin-Cellulose Blend Fibers as Precursors for Carbon Fibers.
    Zahra H; Selinger J; Sawada D; Ogawa Y; Orelma H; Ma Y; Kumagai S; Yoshioka T; Hummel M
    ACS Sustain Chem Eng; 2022 Jul; 10(26):8314-8325. PubMed ID: 35847521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin-based carbon fibers: Insight into structural evolution from lignin pretreatment, fiber forming, to pre-oxidation and carbonization.
    Jia G; Innocent MT; Yu Y; Hu Z; Wang X; Xiang H; Zhu M
    Int J Biol Macromol; 2023 Jan; 226():646-659. PubMed ID: 36521701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NOx and N2O precursors from biomass pyrolysis: role of cellulose, hemicellulose and lignin.
    Ren Q; Zhao C
    Environ Sci Technol; 2013 Aug; 47(15):8955-61. PubMed ID: 23848228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.