BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 35041901)

  • 1. Integrated polycaprolactone microsphere-based scaffolds with biomimetic hierarchy and tunable vascularization for osteochondral repair.
    Gu X; Zha Y; Li Y; Chen J; Liu S; Du Y; Zhang S; Wang J
    Acta Biomater; 2022 Mar; 141():190-197. PubMed ID: 35041901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits.
    Du Y; Liu H; Yang Q; Wang S; Wang J; Ma J; Noh I; Mikos AG; Zhang S
    Biomaterials; 2017 Aug; 137():37-48. PubMed ID: 28528301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration.
    Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M
    Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Preparation and
    Li J; Zhang X; Guo Q; Zhang J; Cao Y; Zhang X; Huang J; Wang Q; Liu X; Hao C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Apr; 32(4):434-440. PubMed ID: 29806301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilayer functional bionic fabricated polycaprolactone based fibrous membranes for osteochondral integrated repair.
    Hu Y; Yin X; Ding H; Kang M; Liang S; Wei Y; Huang D
    Colloids Surf B Biointerfaces; 2023 May; 225():113279. PubMed ID: 36989815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeze-casting osteochondral scaffolds: The presence of a nutrient-permeable film between the bone and cartilage defect reduces cartilage regeneration.
    Chen J; Li Y; Liu S; Du Y; Zhang S; Wang J
    Acta Biomater; 2022 Dec; 154():168-179. PubMed ID: 36210044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-pot porogen free method fabricated porous microsphere-aggregated 3D PCL scaffolds for bone tissue engineering.
    Yao Q; Liu Y; Pan Y; Miszuk JM; Sun H
    J Biomed Mater Res B Appl Biomater; 2020 Aug; 108(6):2699-2710. PubMed ID: 32154997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
    Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W
    J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-printed biomimetic scaffolds with precisely controlled and tunable structures guide cell migration and promote regeneration of osteochondral defect.
    Gu Y; Zou Y; Huang Y; Liang R; Wu Y; Hu Y; Hong Y; Zhang X; Toh YC; Ouyang H; Zhang S
    Biofabrication; 2023 Oct; 16(1):. PubMed ID: 37797606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization.
    Gupte MJ; Swanson WB; Hu J; Jin X; Ma H; Zhang Z; Liu Z; Feng K; Feng G; Xiao G; Hatch N; Mishina Y; Ma PX
    Acta Biomater; 2018 Dec; 82():1-11. PubMed ID: 30321630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic design and fabrication of multilayered osteochondral scaffolds by low-temperature deposition manufacturing and thermal-induced phase-separation techniques.
    Zhang T; Zhang H; Zhang L; Jia S; Liu J; Xiong Z; Sun W
    Biofabrication; 2017 May; 9(2):025021. PubMed ID: 28462906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits.
    Martinez-Diaz S; Garcia-Giralt N; Lebourg M; Gómez-Tejedor JA; Vila G; Caceres E; Benito P; Pradas MM; Nogues X; Ribelles JL; Monllau JC
    Am J Sports Med; 2010 Mar; 38(3):509-19. PubMed ID: 20093424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-aided patterning of PCL microspheres to build modular scaffolds featuring improved strength and neovascularized tissue integration.
    Salerno A; Palladino A; Pizzoleo C; Attanasio C; Netti PA
    Biofabrication; 2022 Jul; 14(4):. PubMed ID: 35728565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repair and regeneration of osteochondral defects in the articular joints.
    Swieszkowski W; Tuan BH; Kurzydlowski KJ; Hutmacher DW
    Biomol Eng; 2007 Nov; 24(5):489-95. PubMed ID: 17931965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of 3D PCL microsphere/TiO
    Khoshroo K; Jafarzadeh Kashi TS; Moztarzadeh F; Tahriri M; Jazayeri HE; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):586-598. PubMed ID: 27770931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility.
    Du Y; Liu H; Shuang J; Wang J; Ma J; Zhang S
    Colloids Surf B Biointerfaces; 2015 Nov; 135():81-89. PubMed ID: 26241919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits.
    Levingstone TJ; Thompson E; Matsiko A; Schepens A; Gleeson JP; O'Brien FJ
    Acta Biomater; 2016 Mar; 32():149-160. PubMed ID: 26724503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HA-g-CS Implant and Moderate-intensity Exercise Stimulate Subchondral Bone Remodeling and Promote Repair of Osteochondral Defects in Mice.
    Shen K; Liu X; Qin H; Chai Y; Wang L; Yu B
    Int J Med Sci; 2021; 18(16):3808-3820. PubMed ID: 34790057
    [No Abstract]   [Full Text] [Related]  

  • 19. Mimicking the Composition and Structure of the Osteochondral Tissue to Fabricate a Heterogeneous Three-Layer Scaffold for the Repair of Osteochondral Defects.
    Zhou H; Yuan L; Xu Z; Yi X; Wu X; Mu C; Ge L; Li D
    ACS Appl Bio Mater; 2022 Feb; 5(2):734-746. PubMed ID: 35094516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional polycaprolactone-hydroxyapatite scaffolds combined with bone marrow cells for cartilage tissue engineering.
    Wei B; Yao Q; Guo Y; Mao F; Liu S; Xu Y; Wang L
    J Biomater Appl; 2015 Aug; 30(2):160-70. PubMed ID: 25766036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.