BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35042198)

  • 1. Fitting the determined impedance in the guinea pig inner ear to Randles circuit using square error minimization in the range of 100 Hz to 50 kHz.
    Pleshkov MO; D'Alessandro S; Svetlik MV; Starkov DN; Zaitsev VA; Handler M; Baumgarten D; Saba R; van de Berg R; Demkin VP; Kingma H
    Biomed Phys Eng Express; 2022 Jan; 8(2):. PubMed ID: 35042198
    [No Abstract]   [Full Text] [Related]  

  • 2. Impedance measures for a better understanding of the electrical stimulation of the inner ear.
    Mesnildrey Q; Macherey O; Herzog P; Venail F
    J Neural Eng; 2019 Feb; 16(1):016023. PubMed ID: 30523898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-impedance characterization technique with implantable neural stimulator using biphasic current stimulus.
    Lo YK; Chang CW; Liu W
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():474-7. PubMed ID: 25569999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the surface phenomena in carbon paste electrodes by low frequency impedance and double-layer capacitance measurements.
    Savitri D; Mitra CK
    Bioelectrochem Bioenerg; 1999 Feb; 48(1):163-9. PubMed ID: 10228583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo.
    Wei XF; Grill WM
    J Neural Eng; 2009 Aug; 6(4):046008. PubMed ID: 19587394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical characterization of high frequency stimulation electrodes: role of electrode material and stimulation parameters on electrode polarization.
    Ghazavi A; Cogan SF
    J Neural Eng; 2018 Jun; 15(3):036023. PubMed ID: 29205176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inner ear test battery in guinea pig models - a review.
    Young YH
    Acta Otolaryngol; 2018 Jun; 138(6):519-529. PubMed ID: 29310507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of electrical current configuration on potential fields in the electrically stimulated cochlea: field models and measurements.
    Spelman FA; Pfingst BE; Clopton BM; Jolly CN; Rodenhiser KL
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():131-6. PubMed ID: 7668604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impedance components in longitudinal direction in the guinea-pig taenia coli.
    Ohba M; Sakamoto Y; Tokuno H; Tomita T
    J Physiol; 1976 Apr; 256(3):527-40. PubMed ID: 1271291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of Salt Content in Canned Tuna by Impedance Spectroscopy: A Feasibility Study for Distinguishing Salt Levels.
    Zabala I; Merino S; Eletxigerra U; Ramiro J; Burguera M; Aranzabe E
    Foods; 2024 Jun; 13(11):. PubMed ID: 38890993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of membrane properties of trigeminal root ganglion neurons in guinea pigs.
    Puil E; Gimbarzevsky B; Miura RM
    J Neurophysiol; 1986 May; 55(5):995-1016. PubMed ID: 3711977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New equivalent-electrical circuit model and a practical measurement method for human body impedance.
    Chinen K; Kinjo I; Zamami A; Irei K; Nagayama K
    Biomed Mater Eng; 2015; 26 Suppl 1():S779-86. PubMed ID: 26406074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing signal amplitude in electrical impedance tomography of neural activity using a parallel resistor inductor capacitor (RLC) circuit.
    Hope J; Aqrawe Z; Lim M; Vanholsbeeck F; McDaid A
    J Neural Eng; 2019 Nov; 16(6):066041. PubMed ID: 31536974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skin Impedance Estimation System for Voltage-mode Electrical Stimulator with an AC Bridge Circuit.
    Matsui H; Ohnishi K; Cho SG
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study of electrode impedance and NRT value characteristics with cochlear implants in children with malformed inner ear and normal inner ear].
    Qiao X; Wang D
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2013 Nov; 27(22):1231-3. PubMed ID: 24616978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrode-electrolyte interface properties in implantation conditions.
    Riistama J; Lekkala J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6021-4. PubMed ID: 17946736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer Simulation of the Electrical Stimulation of the Human Vestibular System: Effects of the Reactive Component of Impedance on Voltage Waveform and Nerve Selectivity.
    D'Alessandro S; Handler M; Saba R; Garnham C; Baumgarten D
    J Assoc Res Otolaryngol; 2022 Dec; 23(6):815-833. PubMed ID: 36050508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation of the impedance and effective electrode area of doped PEDOT modified electrodes for brain-machine interfaces.
    Harris AR; Molino PJ; Kapsa RM; Clark GM; Paolini AG; Wallace GG
    Analyst; 2015 May; 140(9):3164-74. PubMed ID: 25773879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic neural stimulation with thin-film, iridium oxide electrodes.
    Weiland JD; Anderson DJ
    IEEE Trans Biomed Eng; 2000 Jul; 47(7):911-8. PubMed ID: 10916262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaxation processes due to the electrode-electrolyte interface in ionic solutions.
    Sanabria H; Miller JH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051505. PubMed ID: 17279915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.